por malbec » Qui Out 18, 2012 19:47
Uma praça circular tem diâmetro de 50 metros. Na praça foram feitos 4 canteiros como mostra a figura. (como não posso mostrar a figura, o canteiro é semelhante a 4 triângulos, um de cada lado fazendo uma espécie de cruz dentro da circunferência). Cada canteiro corresponde a um ângulo central de 30º. Calcule o comprimento da cerca necessária para se cercarem todos os canteiros.
Comentário: Essa questão para mim é muito confusa porque eu tentei usar a fórmula do cumprimento da circunferência
C = 2IIr, porém, associada à teoria do ângulo central, não consegui entender nada. Me parece que ele quer cercar esse suposto triângulo contornando por cada canteiro triângular, de forma independente do espaço em branco.
Acredito que agora consegui enviar a figura.
Editado pela última vez por
malbec em Sáb Out 20, 2012 11:13, em um total de 1 vez.
-
malbec
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 31, 2012 10:41
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: formação geral
- Andamento: cursando
por MarceloFantini » Qui Out 18, 2012 20:33
Sem a figura será complicado de resolver o problema.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por malbec » Sex Out 19, 2012 11:35
Bom dia caro amigo! Não sei como colocar uma figura neste site
-
malbec
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Sex Ago 31, 2012 10:41
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: formação geral
- Andamento: cursando
por Gustavo Gomes » Sex Out 19, 2012 22:02
Olá, Malbec.
Para inserir a figura, você pode salvá-la no formato '.png' e adicionar como anexo no post. Ao anexar você tem a opção de inserir a imagem no corpo do texto.
Espero ter ajudado.
-
Gustavo Gomes
- Usuário Parceiro

-
- Mensagens: 50
- Registrado em: Sex Out 05, 2012 22:05
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Matemática-Licenciatura
- Andamento: formado
por MarceloFantini » Sex Out 19, 2012 22:05
Veja
este link que pode te ajudar.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [circunferência] Geometria Plana
por claudia » Qui Ago 14, 2008 18:35
- 11 Respostas
- 13891 Exibições
- Última mensagem por claudia

Seg Ago 18, 2008 18:24
Geometria Plana
-
- Geometria plana - Circunferência
por Adri » Ter Mai 18, 2010 22:12
- 4 Respostas
- 17755 Exibições
- Última mensagem por paulo testoni

Qua Abr 29, 2020 15:11
Geometria Plana
-
- geometria analitica-circunferencia
por xandeshaffer » Qua Set 12, 2012 19:33
- 1 Respostas
- 3074 Exibições
- Última mensagem por LuizAquino

Sex Set 14, 2012 16:14
Geometria Analítica
-
- Geometria Analítica - Circunferência
por matheus_frs1 » Dom Mai 11, 2014 00:34
- 4 Respostas
- 2547 Exibições
- Última mensagem por Russman

Dom Mai 11, 2014 15:44
Geometria Analítica
-
- geometria analitica circunferencia
por caciano-death » Sex Fev 05, 2016 21:30
- 0 Respostas
- 1944 Exibições
- Última mensagem por caciano-death

Sex Fev 05, 2016 21:30
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.