Na integra: "Exercicío: 7.24) Calcule a área do triângulo cujos vértices são os pontos A(2,1,-1), B(1,-1,0) e C(-1,1,2)". (Melo, Aline Resmine. Apostila de Álgebra Linear e Geometria Analítica, 2010, p.113).
- Para tento, pensei ná fórmula abaixo e resolvi:

Com o eixo 'Z', fica:

Resolução:



- No entanto, a resposta que consta no gabarito é:
![6\sqrt[]{2} 6\sqrt[]{2}](/latexrender/pictures/47873a0de37bfd7f9e4e44390bcce50f.png)
- E agora, senhor? Onde foi que eu errei? Oh God, why?
Abraços pessoal! Aguardando..

.Assim ,
.
.
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.