• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo de área de triângulo] Com os três eixos coordenado.

[Cálculo de área de triângulo] Com os três eixos coordenado.

Mensagempor Matheus Lacombe O » Sáb Out 13, 2012 16:30

- Dae galerinha! Tudo bem? Olhem só: - Estava resolvendo minha lista de exercicíos de 'Algebra Linear e Geometria Analítica' e eis que me deparo com uma questão em que não consigo concordar com o resultado exposto no gabarito. A questão basicamente propõem que, dados três pontos no espaço, pertencentes a um triângulo qualquer, deve-se encontrar a área deste triângulo. Lembrando, o tipo do triângulo não é informado.

Na integra: "Exercicío: 7.24) Calcule a área do triângulo cujos vértices são os pontos A(2,1,-1), B(1,-1,0) e C(-1,1,2)". (Melo, Aline Resmine. Apostila de Álgebra Linear e Geometria Analítica, 2010, p.113).

- Para tento, pensei ná fórmula abaixo e resolvi:

A= \frac{\left|
\begin{pmatrix}
   {x}_{a} & {y}_{a} & 1 \\ 
   {x}_{b} & {y}_{b} & 1 \\
   {x}_{c} & {y}_{c} & 1
\end{pmatrix}
 \right|}{2}

Com o eixo 'Z', fica:

A= \frac{\left|
\begin{pmatrix}
   {x}_{a} & {y}_{a} & {z}_{a}  \\ 
   {x}_{b} & {y}_{b} & {z}_{b}  \\
   {x}_{c} & {y}_{c} & {z}_{c}
\end{pmatrix}
 \right|}{2}

Resolução:

A= \frac{\left|
\begin{pmatrix}
   2 & 1 & -1  \\ 
   1 & -1 & 0  \\
   -1 & 1 & 2
\end{pmatrix}
 \right|}{2}

A= \frac{\left|-6 \right|}{2}

A= 3

- No entanto, a resposta que consta no gabarito é:

6\sqrt[]{2}

- E agora, senhor? Onde foi que eu errei? Oh God, why?

Abraços pessoal! Aguardando..
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Cálculo de área de triângulo] Com os três eixos coorden

Mensagempor e8group » Sáb Out 13, 2012 17:51

Considere o triângulo ABC . Através da altura (h) relativa ao segmento AC teremos duas relações donde obteremos a altura em função do ângulo adjacente a altura .



1) h= cos(\gamma) |AB|



2) cos(\gamma) = \frac{ \overrightarrow{h} \cdot \overrightarrow{BA}}{|h||BA| }


Substituindo a relação (1) em (2) :



h = \frac{ \overrightarrow{AB} \cdot \overrightarrow{BA}}{|BA| } .Assim ,



S = \frac{|AC||\overrightarrow{AB} \cdot \overrightarrow{BA}|} { 2|BA| } .



Visto que :


\overrightarrow{AB} = (-1,-2,1)


\overrightarrow{BA} = (1,2,-1)


|AC| = \sqrt{18} = 3\sqrt{2}


Seque que :



S = \frac{3\sqrt{2}|(-1 -2 -1)|}{2} = 6 \sqrt{2} u.a .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.