• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor Danilo » Qui Set 27, 2012 11:33

Verifique se os pontos dados a seguir são colineares, isto é, pertencem a uma mesma reta:

(a) A = (5,1,-3), B = (0,3,4) e C = (0,3,-5);

(b) A = (-1,1,3), B = (4,2,-3) e C = (14,4,-15);

Bom, se isso fosse no plano...beleza, eu pegava dois pontos e tentava encontrar a equação da reta...

Mas eu não tenho a menor idéia do que fazer quando estamos no espaço. Como resolver utilizando o conhecimento de vetores? Grato desde já ; )
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Vetores

Mensagempor young_jedi » Qui Set 27, 2012 12:18

Fazendo B-A, voce encontrara o vetor AB e fazendo C-A voce encontrara o vetor CA, se os pontos são colineares então os dois vetores tem a mesma direção, ou seja seu produto vetorial é igual a 0.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Vetores

Mensagempor Russman » Qui Set 27, 2012 15:52

É bem como o amigo ali falou.

Calcule os vetores \overrightarrow{AB} = <x_B-x_A , y_B-y_A,z_B-z_A> e \overrightarrow{BC}=<x_C-x_B , y_C-y_B,z_C-z_B> e compare-os.

Se \overrightarrow{AB}\times \overrightarrow{BC}=\overrightarrow{0}, isto é, existe algum k real tal que

\overrightarrow{AB}=k \overrightarrow{BC}

então os pontos A,B e C pertencem a uma mesma reta. Do contrário, não.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Vetores

Mensagempor Danilo » Qui Set 27, 2012 20:35

Russman escreveu:É bem como o amigo ali falou.

Calcule os vetores \overrightarrow{AB} = <x_B-x_A , y_B-y_A,z_B-z_A> e \overrightarrow{BC}=<x_C-x_B , y_C-y_B,z_C-z_B> e compare-os.

Se \overrightarrow{AB}\times \overrightarrow{BC}=\overrightarrow{0}, isto é, existe algum k real tal que

\overrightarrow{AB}=k \overrightarrow{BC}

então os pontos A,B e C pertencem a uma mesma reta. Do contrário, não.

s

Então, tem como resolver sem utilizar o conhecimento de produto vetorial? Eu apenas vi ''vetores no plano e no espaço''. E que se há um vetor do tipo AB = cBC os dois vetores serão paralelos.
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Vetores

Mensagempor young_jedi » Qui Set 27, 2012 20:46

Sim, voce tem que provar que AC igual k.AB, onde k é um numero real
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.