• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica - Projeção

Geometria Analítica - Projeção

Mensagempor iarapassos » Qua Ago 29, 2012 12:39

Eu tentei resolver usando projeção. Já que tenho um vetor // a ao AC, usei então o sei versor. versor de u= + ou - versor de AC. Também sei que a diagonal AC =AB+AD.
Mas depois que achei o vetor AO que seria o centro do losango, não sei mais como desenvolver para achar os valores das coordenadas... Me ajudem, please! :-P

De um losango ABCD sabemos que A(1,0,2), B(2,-1,2) e a diagonal AC é paralela ao vetor u=(-1,2,2). Determine as coordenadas dos outros vértices.
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Geometria Analítica - Projeção

Mensagempor LuizAquino » Qua Ago 29, 2012 19:37

iarapassos escreveu:Eu tentei resolver usando projeção. Já que tenho um vetor // a ao AC, usei então o sei versor. versor de u= + ou - versor de AC. Também sei que a diagonal AC =AB+AD.
Mas depois que achei o vetor AO que seria o centro do losango, não sei mais como desenvolver para achar os valores das coordenadas... Me ajudem, please! :-P

De um losango ABCD sabemos que A(1,0,2), B(2,-1,2) e a diagonal AC é paralela ao vetor u=(-1,2,2). Determine as coordenadas dos outros vértices.


Faça o seguinte:
1) calcule o vetor \overrightarrow{AC} através da relação \overrightarrow{AC} = 2\,\textrm{proj}\,_{\vec{u}}\overrightarrow{AB} ;
2) determine C usando a relação C = A + \overrightarrow{AC} ;
3) determine D usando a relação D = C + \overrightarrow{BA} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.