• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Circunferencia

Circunferencia

Mensagempor Mic_17 » Qua Ago 22, 2012 17:03

Por favor, preciso de ajuda com essa questão!!!
(Unifal-MG) Seja a circunferencia C de equação x^2+y^2+6raiz(3)x-6y+27=0. Determine a abscissa e a ordenada do ponto P de C que esteja o mais próximo possível da origem do sistema de coordenadas cartesianas.

Minha resolução:
* d(CO)=raiz((-3raiz(3))^2 + (3)^2 = raiz(9.3+9) = raiz(36) = d(CO)= 6 (distancia do centro C a origem O é 6.)
* Descobrir coeficiente angular da reta CO: m=y-yi/x-xi = 3-0/-3raiz(3)-0 = 3/-3raiz(3) = -raiz(3)
* equação reduzida da reta: y = mx -> y = -raiz(3)x

Daí eu tento substituir na equação da circunferencia mas o resultado não dá certo!!
A resposta é: xp=-3raiz(3)/2 e yp=3/2
Mic_17
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Ago 22, 2012 16:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3ano
Andamento: cursando

Re: Circunferencia

Mensagempor Russman » Qua Ago 22, 2012 23:42

Suponhamos que o ponto P seja P(x_P,y_P). Assim, a distância desse ponto até o Origem é

d^2 = x_P^2 + y_P^2.

Ainda, sabemos que esse ponto deve satisfazer a equação da circunferência x^2 + y^2 +6\sqrt{3}x-6y+27=0.

Assim, temos de solucionar o sistema

\left\{\begin{matrix}
x_P^2 + y_P^2 +6\sqrt{3}x_P-6y_P+27=0\\ 
x_P^2 + y_P^2 = d^2
\end{matrix}\right.

que é, na verdade, a busca do ponto de intersecção entre duas circunferências! Combinando as equações e tentando expressar uma equação em x na presença de d, temos, substituindo y na primeira( a apartir de agora simplificarei a notação para x_P = x e y_P = y.)

d^2 +6\sqrt{3}x - 6 \sqrt{d^2-x^2}+27=0

de onde chegamos em

144x^2 + 12\sqrt{3}(d^2+27)^2x+d^4+18d^2+729 = 0.

Lembre-se que qeremos que esta equação tenha apenas 1 solução. Logo, o discriminante da mesma, o Delta, deve ser nulo. Fazendo isso, chega-se a equação em d.

d^4 - 90 d^2+729 = 0

a qual apresenta duas soluções possíveis: d=3 ou d=9. Como qeremos a menor, tomamos d=3.

Se d=3 a equação 144x^2 + 12\sqrt{3}(d^2+27)^2x+d^4+18d^2+729 = 0 se transforma em 144x^2 + 432\sqrt{3}x+972=0 a qual tem duas soluções iguais x=-\frac{3}{2}\sqrt{3}.

Agora basta calcular y. De d^2  +6\sqrt{3}x - 6 y+27=0 temos y= \frac{3}{2} como resposta.

Logo o ponto é P(-\frac{3}{2}\sqrt{3} , \frac{3}{2}).
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?