• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Elipse

Elipse

Mensagempor Claudin » Dom Mai 20, 2012 20:07

Em relação a elipse x^2+4y^2=20, para que os valores de m a reta x+y=m

a)Corta a elipse
b)É tangente a elipse
c)Não corta a elipse


Não sei como fazer.

cheguei a transformar a equação da elipse em

\frac{x^2}{20}+\frac{y^2}{5}=1
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Elipse

Mensagempor LuizAquino » Dom Mai 27, 2012 16:55

Claudin escreveu:Em relação a elipse x^2+4y^2=20, para que os valores de m a reta x+y=m

a)Corta a elipse
b)É tangente a elipse
c)Não corta a elipse



Claudin escreveu:Não sei como fazer.

cheguei a transformar a equação da elipse em

\frac{x^2}{20}+\frac{y^2}{5}=1


Da equação da reta, podemos dizer que y = m - x. Substituindo isso na equação da elipse, temos que:

x^2 + 4(m - x)^2 = 20

5x^2 - 8mx +4m^2 - 20 = 0

Note que isso é uma equação polinomial do 2º grau na incógnita x.

Caso ela tenha solução real (ou seja, \Delta \geq 0), temos que a reta irá cortar a elipse.

Mas se ela tiver apenas uma solução real (ou seja, \Delta = 0), temos que a reta será tangente a elipse.

Por fim, caso ela não tenha solução real (ou seja, \Delta < 0), temos que a reta não cortará a elipse.

Agora tente usar essas informações para concluir o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Elipse

Mensagempor Claudin » Ter Jun 12, 2012 20:29

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59