• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício sobre condição de paralelismo - DÚVIDA

Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Danilo » Sáb Jun 02, 2012 03:56

Pessoal, estou apanhando para resolver um exercício aparentemente simples... lá vai !

Qual é o valor de r para que a reta de equação x-5y+20=0 seja paralela à reta determinada pelos pontos M (r,s) e N (2,1)?

Bom, primeiro sei que, para que as retas sejam paralelas é necessário que x/r = -5/s ou que os coeficientes angulares das retas sejam iguais. Também sei que, se eu possuir um ponto dado (por exemplo (2,1)) e mais o coeficiente angular eu obtenho a equação da reta. tentei utilizar a equação y-y0=m(x-x0) mas eu não cheguei a lugar algum. Não estou conseguindo encaixar todas essas informações para resolver o problema ! Quem puder me dar uma luz, ou qual caminho seguir, agradeço !!!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Russman » Sáb Jun 02, 2012 04:12

Primeiro você deve identificar a reta que passa pelos pontos M e N analiticamente.

Esta reta é y_{2} = ax + b tal que,

\left\{\begin{matrix}
M(r,s)\therefore s=ra+b\\ 
N(2,1)\therefore 1=2a+b
\end{matrix}\right.

Solucionando este sistema identificamos a reta como y_{2}= \left ( \frac{s-1}{r-2} \right )x + \left ( \frac{r-2s}{r-2} \right ).

Como o coeficiente angular da outra reta é 1/5, então para satisfazer a condição de paralelismo, é fato que

1/5 = \left ( \frac{s-1}{r-2} \right )

Ou seja,

r =5s-3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Danilo » Sáb Jun 02, 2012 04:30

Russman escreveu:Primeiro você deve identificar a reta que passa pelos pontos M e N analiticamente.

Esta reta é y_{2} = ax + b tal que,

\left\{\begin{matrix}
M(r,s)\therefore s=ra+b\\ 
N(2,1)\therefore 1=2a+b
\end{matrix}\right.

Solucionando este sistema identificamos a reta como y_{2}= \left ( \frac{s-1}{r-2} \right )x + \left ( \frac{r-2s}{r-2} \right ).

Como o coeficiente angular da outra reta é 1/5, então para satisfazer a condição de paralelismo, é fato que

1/5 = \left ( \frac{s-1}{r-2} \right )

Ou seja,

r =5s-3.


Muito obrigado !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.