• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Assíntotas da hipérbole

Assíntotas da hipérbole

Mensagempor CarolMarques » Sáb Mai 26, 2012 11:41

A equação 7x²+24xy-256x-192y+1456=0 é uma hipérbole que por meio de rotação e translação eu cheguei numa equação reduzida x²/9-y²/16=1 o centro é C(8,6) e o angulo de rotação é o arc sen =3/5 (sen a =3/5 e cos a =4/5).Eu não sei achar as assintotas dessa hipérbole.Por favor me ajudem.
CarolMarques
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qui Mai 03, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Assíntotas da hipérbole

Mensagempor LuizAquino » Seg Mai 28, 2012 15:12

CarolMarques escreveu:A equação 7x²+24xy-256x-192y+1456=0 é uma hipérbole que por meio de rotação e translação eu cheguei numa equação reduzida x²/9-y²/16=1 o centro é C(8,6) e o angulo de rotação é o arc sen =3/5 (sen a =3/5 e cos a =4/5).


Ok. Mas é interessante você mudar as variáveis x e y conforme efetua as translações e rotações.

Por exemplo, ao realizar a translação você passou do sistema de eixos xOy para um outro sistema de eixos x'O'y'.

Em seguida, ao realizar a rotação você passou do sistema de eixos x'O'y' para um outro sistema de eixos uO''v.

Sendo assim, é interessante deixar a equação final com o formato:

\frac{u^2}{9} - \frac{v^2}{16} = 1

Isso ajuda a não fazer confusão sobre que sistema de eixos estamos no momento.

CarolMarques escreveu:Eu não sei achar as assintotas dessa hipérbole.


Se uma hipérbole é dada pela equação \frac{u^2}{a^2} - \frac{v^2}{a^2} = 1, então as assíntotas dessa hipérbole são v = \frac{b}{a}u e v = -\frac{b}{a}u .

Portanto, as assíntotas da hipérbole \frac{u^2}{9} - \frac{v^2}{16} = 1 são dadas por v = \frac{4}{3}u e v = -\frac{4}{3}u .

Precisamos agora aplicar uma rotação nessas assíntotas e depois uma translação. Desse modo, voltaremos para o sistema de eixos originais.

Para aplicar a rotação, basta realizar as substituições u = \frac{4}{5}x' + \frac{3}{5}y' e v = -\frac{3}{5}x' + \frac{4}{5}y'. Isso nos leva do sistema uOv para o sistema x'O'y'. Temos então que:

v = \frac{4}{3}u\implies x' = 0

v = -\frac{4}{3}u\implies y' = -\frac{7}{24}x'

Agora para aplicar a translação, basta realizar as substituições x' = x - 8 e y' = y - 6 . Isso nos leva do sistema x'O'y' para o sistema xOy. Temos então que:

x' = 0 \implies x = 8

y' = -\frac{7}{24}x' \implies y = -\frac{7}{24}x + \frac{25}{3}

Portanto, as equações das assíntotas no sistema xOy são dadas por x = 8 e y = -\frac{7}{24}x + \frac{25}{3} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}