• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ajuda para provar que 3 pontos estão alinhados.

Ajuda para provar que 3 pontos estão alinhados.

Mensagempor Danilo » Qua Mai 02, 2012 02:08

Pessoal, estou em dúvida para resolver um exercício. Lá vai:

Mostre que A (a, -3a), B(a+3, -3a - 1) e C( a + 5, -3a -2) são colineares para todo valor real de a.

Bom, sei que se eles estão alinhados posso usar um determinante com as coordenadas com a condição que o determinante valendo zero. Mas não sei como provar para qualquer valor de a. Quem puder dar uma luz, agradeço!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Ajuda para provar que 3 pontos estão alinhados.

Mensagempor Russman » Qua Mai 02, 2012 06:19

Isto! Três pontos estão alinhados, isto é, pertencem a uma mesma reta no plano, se o determinante da matriz formada pelas suas coordenadas é nulo. Veja que este determinante se relaciona com a area do triângulo limitado por estes 3 pontos. Assim, se a area é nula não existe triangulo e , portanto, os pontos são alinhados.

Você pode provar que este corpo de pontos é colinear para todo "a" se o determinante não for função de a e nulo.

Por exemplo, suponhamos que o determinante tenha dado 2a-4. Então estes pontos seriam colineares se 2a - 4 = 0 => a = 2. Agora suponha que o determinante tenha dado 5. Então este corpo de pontos não é colinear para nenhum valor de a. Mas e se der 0 o determinante? Então este corpo de pontos é colinear para todo a, pois o determinante não é função de a e nulo!

Mas eu calculei o determiante e está dando -1. Acho que este corpo de pontos não é colinear para todo a.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}