• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica Equações Paramétricas.

Geometria Analítica Equações Paramétricas.

Mensagempor lucat28 » Sex Set 16, 2011 19:08

Iai galera,
o problema é essa seguinte questão:

Achar as equações paramétricas de acordo com a figura:
Imagem

De:
A e B
C e D
A e D
B e C
D e E
B e D

Daí achei os pontos A(2,0,4) B(0,0,4) C(0,3,0) D(2,3,0) E(2,0,0)

para encontrar a equação paramétrica eu fiz o seguinte
A-B = (2,0,4)-(0,0,4) = (2,0,0)

Eq. paramétrica de A e B-> X= 2+2t// Y=0 Z=4


C-D= (0,3,0)-(2,3,0)= (-2,0,0)


Eq paramétrica de C e D -> X= -2t // Y= 3 // Z= 0 ==> Só que no gabarito o valor de X é igual a 2t


A-D= (2,0,4)-(2,3,0) = (0,-3,4)

Eq paramétrica de C e D-> X= 2// Y= -3t // Z= 4+4t ===> Só que no gabarito o valor de Y = 3t e Z=4-4t.


Resumindo... Nessa questão, estou fazendo o seguinte método: Subtraio o primeiro ponto pelo segundo e depois jogo na fórmula da paramétrica, acontece que o resultado só bate certo se tiver o ponto B, caso contrário tenho que inverter, subtrair o segundo com o primeiro ponto, para o resultado dar igual ao gabarito.

A minha dúvida é essa..
Espero que tenham entendido.

http://imageshack.us/photo/my-images/58 ... log33.jpg/ o link da figura que tem na questão.

desde já obrigado.
lucat28
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Qua Mar 16, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Geometria Analítica Equações Paramétricas.

Mensagempor MarceloFantini » Sex Set 16, 2011 19:43

Os pontos são:

A = (2,0,4)
B = (0,0,4)
C = (0,3,0)
D = (2,3,0)
E = (2,0,0)

Então note que você pode escrever um segmento parametrizando passando por dois pontos genéricos P_1 e P_2 por \gamma(t) = P_1 + t(P_2 - P_1) para t \in [0,1]. Quando t=0, temos \gama(0) = P_1 e para t=1 temos \gama(1) = P_2. Assim, parametrizando alguns:

\gamma_1(t) = A + t(B-A) = (2,0,4) + t(-2,0,0)
\gamma_2(t) = B + t(C-B) = (0,0,4) + t(0,3,-4)
\gamma_3(t) = C + t(D-C) = (0,3,0) + t(2,0,0)

Para todos estou tomando t \in [0,1]. Tente fazer o resto.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59