• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão sobre cônicas

Questão sobre cônicas

Mensagempor Cristiano Tavares » Dom Set 04, 2011 12:41

Olá a todos,

Não estou conseguindo resolver uma questão sobre cônicas. Nessa questão são dados cinco pontos que pertencem à cônica: P(1,1), Q(2,1), R(3,-1), S(-3,2) e T(-2,-1). Pergunta-se então qual é a equação da cônica.

Sei que a forma geral da equação de uma cônica (parábola, elipse, hipérbole) é Ax² + Bxy + Cy² + Dx + Ey + F = 0. Sei também que os pontos dados acima devem ser substituídos nessa equação geral, encontrando-se então um sistema de cinco equações com as incógnitas A, B, C, D, E, e F. O problema é que não estou conseguindo resolver esse sistema, não estou entendendo o fato de serem seis variáveis e apenas cinco equações.

Alguém poderia me ajudar a resolver esse sistema de equações?
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Questão sobre cônicas

Mensagempor LuizAquino » Dom Set 04, 2011 20:11

Como você mesmo escreveu, a equação geral da cônica é:

Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0

Entretanto, tem um detalhe: por definição temos que A, B ou C deve ser diferente de zero.

Suponha que A é diferente de zero. Veja que você pode fazer:

x^2 + \frac{B}{A}xy + \frac{C}{A}y^2 + \frac{D}{A}x + \frac{E}{A}y + \frac{F}{A} = 0

Agora façamos c_1 = \frac{B}{A}, c_2 = \frac{C}{A}, c_3 = \frac{D}{A}, c_4 = \frac{E}{A} e c_5 = \frac{F}{A} . A equação pode então ser escrita como:

x^2 + c_1xy + c_2y^2 + c_3x + c_4y + c_5 = 0

Veja que dados os cinco pontos, você pode determinar as cinco constantes acima.

Por outro lado, veja que se A fosse zero, então B ou C não seria. Bastava então dividir toda a equação pela constante que não fosse nula. Novamente você poderia criar cinco novas constantes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: