• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raizes de equação de grau>=3

Raizes de equação de grau>=3

Mensagempor spyderkill » Qua Mai 09, 2012 17:31

tenho a equação f(x)=x³-2x+1 e preciso encontrar suas raizes.

como faço?
spyderkill
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mai 09, 2012 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Raizes de equação de grau>=3

Mensagempor LuizAquino » Qua Mai 09, 2012 18:32

spyderkill escreveu:tenho a equação f(x)=x³-2x+1 e preciso encontrar suas raizes.
como faço?


Em primeiro lugar, note que isso não é uma equação, mas sim uma função.


Uma equação seria, por exemplo, dada por x^3 - 2x + 1 = 0 . Nesse caso, essa seria uma equação polinomial do 3° grau. Para achar as suas raízes, comece aplicando o Teorema das Raízes Racionais para verificar se há alguma raiz racional.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Raizes de equação de grau>=3

Mensagempor pedroaugustox47 » Sex Mai 11, 2012 02:33

x^3-2x+1=0
nota-se que a soma dos coeficientes é 0, logo {x}_{1}=1
se 1 é raiz da equação, então a equação é divisível por\left(x-1 \right)
dividindo x^3-2x+1 por \left(x-1 \right) temos:
x^3-2x+1=\left(x-1 \right)\left(x^2+x-1 \right)
\left(x-1 \right)\left(x^2+x-1 \right)=0
\left(x^2+x-1 \right)=0
resolvendo por Báskhara temos :
{x}_{2}=\frac{1+\sqrt[2]{5}}{2} e {x}_{3}=\frac{1-\sqrt[2]{5}}{2}
Qual o gabarito?
pedroaugustox47
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Mai 11, 2012 01:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Sistema Elite de Ensino-CN/EPCAR
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.