• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CLASSIFICAR CADA ITEM

CLASSIFICAR CADA ITEM

Mensagempor maykonnunes » Seg Mai 30, 2011 23:00

Classifique cada afirmação a seguir em Verdadeira ou Falsa, justifique
a) Existe apenas um polinômio que dividido por x-2 ou por x-3 dá resto 1.
b) Não existe polinômio algum que dividido por x-2 ou por x-3 dá resto 1.
c) Exsite uma infinidade de polinômio que dividido por x-2 ou por x-3 dá resto 1.
aguardo ajuda
Abraços
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: CLASSIFICAR CADA ITEM

Mensagempor Molina » Ter Mai 31, 2011 02:37

Boa noite.

Lembre-se que:

P(x) = d(x)*q(x) + r(x)

onde,

P(x) = Dividendo;
d(x) = Divisor;
q(x) = Quociente;
r(x) = Resto.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: CLASSIFICAR CADA ITEM

Mensagempor maykonnunes » Ter Mai 31, 2011 22:35

Não sei se entendi seu raciocinio para a solução

P(x)=(x-2)*q(X)+1
p(X)=(X-3)*Q(X)+1

OU PENSEI EM...
p(X)=(X-2)(X-3)+R
{x}^{2}-5x+7
so não sei como mostrar se le é unico ou não
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: CLASSIFICAR CADA ITEM

Mensagempor Molina » Qui Jun 02, 2011 01:24

Boa noite, Maycon.

Desculpe a demora...

Duas alternativas se anulam quando se é mostrado que uma delas é verdade. Ou seja, só temos uma verdadeira.

Perceba que a questão quer saber se há (ou não) polinômio que dividido por (x-2) OU (x-3) deixa resto 1.

Como eu disse anteriormente:

P(x) = d(x)*q(x) + r(x)

Queremos encontrar (ou não) P(x)'s... Encontraremos um, vários ou nenhum. Vejamos:

P(x) = d(x)*q(x) + r(x)

P(x) = (x-2)*q(x) + 1

Perceba que dependendo do q(x) que eu escolher, conseguirei um polinômio P(x) que quando dividido por (x-2) deixa resto 1, exemplos:

q(x) = 2x \Rightarrow P_1(x) = 2x^2 -4x + 1

q(x) = x^4-3 \Rightarrow P_2(x) = x^5-2x^4-3x + 7

etc.

O mesmo pode ser feito para descobrir polinômios que divididos por (x-3) deixam resto 1.

Ou seja, há infinitas soluções.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: CLASSIFICAR CADA ITEM

Mensagempor maykonnunes » Sex Jun 10, 2011 15:15

agradeço atenção
desde já peço desculpa, mas não encontrei uma forma (um local onde pudesse mandar uma mensagem pessoal para você), em que fase vcoê está? também sou aluno da UFSC aluno EAD, quero saber se voce tem algum material de geometria III, que possa ajudar nesta matéria; Abraços e mais uma vez desculpa usar aqui.
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D