• Anúncio Global
    Respostas
    Exibições
    Última mensagem

preciso de orientaçao para resoluçao(polinomios)

preciso de orientaçao para resoluçao(polinomios)

Mensagempor Fabricio dalla » Ter Abr 05, 2011 17:19

(UFES) o numero complexo{Z}_{1}=\frac{-1}{2}+i\frac{\sqrt[2]{3}}{2} e uma das raizes do polinomio   
[tex]
 P(Z)={Z}^{4}+2{Z}^{3}+{Z}^{2}-1
a)Encontre outra raiz complexa não real de P(Z)
b)escreva P(Z)como produto de dois polinomios com coeficiente reais[/tex]




o que devo fazer
na alternativa a) quando ele fala outra raiz complexa não real de P(Z) ele se refere a um numero complexo imaginario puro ou eu devo colocar so o conjugado de z1 como resposta ?

b)com essas duas raizes complexas eu desço o grau do polinomio ate grau 2 ai escrevo que P(Z)=P(Z) baixado 2grausX o produto de (Z-Z1).(Z-Z2) onde Z2 e o conjugado de Z1?
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: preciso de orientaçao para resoluçao(polinomios)

Mensagempor Elcioschin » Ter Abr 05, 2011 19:04

Se - 1/2 + i*V3/2 é uma raiz complexa, outra raiz, obrigatoriamente complexa é -1/2 - i*V3/2

[z - (-1/2 + i*V3/2)]*[z - (-1/2 - i*V3/2)] = [ (z + 1/2) + i*V3/2]*[(z + 1/2) - i*V3/2] = (z + 1/2)² - (i*V3/2)² = (z² + z + 1/4) - (- 3/4) = z² + z + 1

Divida agora o polinômio original (do 4º grau) por x² + x + 1 e encontre outro polinômio do 2º grau .

Igualando este último a zero você encontra as outras duas raízes.
Editado pela última vez por Elcioschin em Qua Abr 06, 2011 09:25, em um total de 1 vez.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: preciso de orientaçao para resoluçao(polinomios)

Mensagempor Fabricio dalla » Ter Abr 05, 2011 23:12

ta ai pra responder a letra B seria P(Z)=({Z}^{2}+Z+1).(\frac{P(Z)}{{Z}^{2}+Z+1}pelo teorema da chave?)
Fabricio dalla
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 111
Registrado em: Sáb Fev 26, 2011 17:50
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: preciso de orientaçao para resoluçao(polinomios)

Mensagempor Elcioschin » Qua Abr 06, 2011 09:23

Sim: o outro polinômio é (z² + 1) ----> Duas raízes imaginárias z = i
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.