• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão prova magisterio 2008

Questão prova magisterio 2008

Mensagempor fernandocez » Seg Fev 14, 2011 16:42

Olá pessoal, eu sou novo aqui. Eu acho que aqui vai ser a minha única chance de aprender a resolver essa questão da prova do concurso prá magistério do Estado RJ.
A questão:

O número real x é tal que x+2{x}^{-1}=5. Então, o valor de {x}^{2}+4{x}^{-2} é:

No gabarito a resposta é: 21

Eu fiz arrumei ficou assim: 2{x}^{2}-10x+1=0
Meu delta deu 92, ai não consegui continuar. Se alguem puder ajudar agradeço.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova magisterio 2008

Mensagempor LuizAquino » Seg Fev 14, 2011 19:14

fernandocez escreveu:O número real x é tal que x+2{x}^{-1}=5. Então, o valor de {x}^{2}+4{x}^{-2} é:


Essa questão depende de você ter uma boa percepção, para notar que elevando ao quadrado ambos os membros da primeira equação a expressão {x}^{2}+4{x}^{-2} irá aparecer no primeiro membro.

\left(x+2x^{-1}\right)^2 = 5^2

x^2 + 4 + 4x^{-2}= 25

x^2 + 4x^{-2} =  21

Obviamente, outro caminho (mais longo) para resolver esse exercício seria desenvolver x+2{x}^{-1}=5 para obter a equação do 2° grau x^2-5x+2=0. Em seguida, substituir as soluções dessa equação na expressão {x}^{2}+4{x}^{-2}. A pessoa que escolher esse caminho verá que ele é bem mais longo do que a solução mais "elegante" apresentada acima. Além disso, é sempre bom lembrar que tempo é um fator crucial em concursos ou vestibulares.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Questão prova magisterio 2008

Mensagempor fernandocez » Seg Fev 14, 2011 23:16

Obrigadão Luiz, eu já vi que tenho que aprender muito prá passar no concurso e aqui é o lugar certo prá isso.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova magisterio 2008

Mensagempor fernandocez » Ter Fev 15, 2011 19:22

LuizAquino escreveu:


Aproveitando a sua ajuda, tem uma parecida com a resolvida que tentei, tentei de todas as formas mas não consegui chegar na resposta. Vai a questão:

26) Se {\left(x+\frac{1}{x}\right)}^{2}=3 , o valor de {x}^{3}+\frac{1}{{x}^{3}}=3

A resposta: 0

Eu fiz assim, {\left(x+\frac{1}{x} \right)}^{3}={\left(\sqrt[]{3} \right)}^{3} , elevei ao cubo ambos os membros e comecei a desenvolver.
Só que não consegui desenvolver. Fiquei enrolado nas operações com frações, fiz assim:
\left(x+\frac{1}{x} \right){\left(x+\frac{1}{x} \right)}^{2}= ... {x}^{3}+3x+\frac{3}{x}+\frac{1}{{x}^{3}}
Daí eu não consegui proceguir mais. Acredito que tá errado o desenvolvimento. Obrigado pela ajuda.
Avatar do usuário
fernandocez
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 131
Registrado em: Seg Fev 14, 2011 15:01
Localização: São João de Meriti - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: formado

Re: Questão prova magisterio 2008

Mensagempor LuizAquino » Ter Fev 15, 2011 20:10

fernandocez escreveu:26) Se {\left(x+\frac{1}{x}\right)}^{2}=3 , o valor de {x}^{3}+\frac{1}{{x}^{3}}

A resposta: 0


Lembre-se que: (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.

Além disso, lembre-se que: \frac{a^n}{a^m} = a^{n-m}.

Pois muito bem, como você havia feito, temos:

{\left(x+\frac{1}{x} \right)}^{3}={\left(\sqrt{3} \right)}^{3}

Que desenvolvendo obtemos:
x^3 + 3x + \frac{3}{x} + \frac{1}{x^3} = 3\sqrt{3}

x^3 + 3\left(x + \frac{1}{x}\right) + \frac{1}{x^3} = 3\sqrt{3}

x^3 + 3\sqrt{3} + \frac{1}{x^3} = 3\sqrt{3}

x^3 + \frac{1}{x^3} = 0
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}