• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Seg Ago 30, 2021 16:09

(ITA-1962)resolver a equaçao

x^4-4x^3+8x^2-16x+16=0

sabendo-se que 2 é raiz dupla da mesma.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Seg Ago 30, 2021 16:21

soluçao
ainda sem o LATEX!...favor ai administraçao resolva tal problema...

vamos ao problema
sabemos que existe pelo menos um par de raizes complexo-conjugadas,pois

a(3)>a(4).a(2)...(-4)^2>8.1(criterio huat-lacuna);tal criterio somente nos diz se ha raizes complexo-conjugadas,nao quantas...e basta uma unica verificaçao de tal criterio na equaçao proposta...
bom,temos pelos dados do problema que 2 é raiz dupla do polinomio,entao p(x)=(x-2)^2.q(x)=(x^2-4x+4)q(x)...
q(x)=(x^4-4x^3+8x^2-16x+16)/(x^2-4x+4)=x^2+4...faz.q(x)=0...x^2+4=0...x=(+/-)2i...logo
p(x)=(x-2)^2.(x+2i).(x-2i)...conj.soluçao=(2,2,2i,-2i)
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}