• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Ter Ago 24, 2021 10:48

(ITA-1965)p(x) é um polinomio de 5° grau e 1,3 e 5 sao raizes da equaçao p(x)=0.se Q(x)=x^2-4x+3 entao
a fraçao p(x)/Q(x) é

a)um polinomio
b)um polinomio de 2°grau
c)negativa para raizes para valores de x compreendidos entre as raizes de Q(x)=0
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Ter Ago 24, 2021 11:19

soluçao
pelos dados do problema teremos

p(x)=(x-1).(x-3).(x-5)r(x),onde r(x) é um polinomio de 2° grau
Q(x)=x^2-4x+3=0...teremos x=1,x=3 raizes de Q(x)=0...logo

p(x)/Q(x)=((x-1)(x-3)(x-5)r(x))/((x-1)(x-3))=(x-5).r(x) que é um polinomio de 3°...

logo a opçao b) esta descartada...

entre x=1 e x=3,teremos

p(x)/Q(x)=(1-5).r(x)=-4.r(x),r(x) de 2°...r(x)=ax^2+bx+c...para x=1,teremos

p(1)/Q(1)=-4.(a.(1)^2+b.(1)+c)=-4(a+b+c)...
fazendo o mesmo para x=3...p(3)/Q(3)=(3-5)r(x)=-2(9a+3b+c)...como nao temos como determinar a,b,c em funçao dos dados do problema,nao temos como afirmar a opçao c)...
portanto o que podemos afirmar que p(x)/Q(x) é um polinomio de 3°...fica a opçao a) como a mais viavel...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}