• Anúncio Global
    Respostas
    Exibições
    Última mensagem

continuaçao do exerc.EN-1937

continuaçao do exerc.EN-1937

Mensagempor adauto martins » Qui Nov 14, 2019 16:00

como chegamos ao polinomio de 1° especie(1° classe),vamos usar um metodo algebrico para calculo de raizes reais,pois sendo a funçao polinomio uma transformaçao linear(algebra linear),podemos ter,para polinomios reciprocos tal condiçao:
sendo p(r)=p(1/r)=0 implicar p(r+1/r)=0...
tomemos o polinomio do exercicio anterior,de 1° especie,a saber

p(x)={x}^{4}-2{x}^{3}-2x+1=0(1)

dividindo por {x}^{2}

teremos

{x}^{2}-2x-(1/x)+(1/{x}^{2})=0

{x}^{2}+(1/{x}^{2})-2.(x+(1/x))(*)


faremos

y=x+(1/x)\Rightarrow {y}^{2}={(x+(1/x)}^{2}

{y}^{2}={x}^{2}+2(x/x)+{(1/x)}^{2}

\Rightarrow {x}^{2}+{(1/x)}^{2}={y}^{2}-2

logo (*) sera

{y}^{2}-2-2y=0...

{y}^{2}-2y-2=0...

cujas raizes serao:

{y}_{(1,2)}=(2(+,-)\sqrt[]{6})/2

como y=x+(1/x)

retorne as equaçoes em x,termine como exercicio...

a equaçao (1) tera raizes complexo-conjugado,pois

p(0)=1\neq 0

{a}_{2}=0...
{a}_{3}.{a}_{1}=(-2).(-2)\succ 0

o calculo dessas raizes complexo-conjugado faremos adiante...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: continuaçao do exerc.EN-1937

Mensagempor adauto martins » Qui Nov 14, 2019 20:17

uma correçao:

{y}_{(1,2)}=(2(+,-)\sqrt[]{4-4.(-2)})/2=2(+,-)\sqrt[]{12})/2

{y}_{(1,2)}=(2(+,-)2\sqrt[]{3})/2=1(+,-)\sqrt[]{3}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59