• Anúncio Global
    Respostas
    Exibições
    Última mensagem

continuaçao do exerc.EN-1937

continuaçao do exerc.EN-1937

Mensagempor adauto martins » Qui Nov 14, 2019 16:00

como chegamos ao polinomio de 1° especie(1° classe),vamos usar um metodo algebrico para calculo de raizes reais,pois sendo a funçao polinomio uma transformaçao linear(algebra linear),podemos ter,para polinomios reciprocos tal condiçao:
sendo p(r)=p(1/r)=0 implicar p(r+1/r)=0...
tomemos o polinomio do exercicio anterior,de 1° especie,a saber

p(x)={x}^{4}-2{x}^{3}-2x+1=0(1)

dividindo por {x}^{2}

teremos

{x}^{2}-2x-(1/x)+(1/{x}^{2})=0

{x}^{2}+(1/{x}^{2})-2.(x+(1/x))(*)


faremos

y=x+(1/x)\Rightarrow {y}^{2}={(x+(1/x)}^{2}

{y}^{2}={x}^{2}+2(x/x)+{(1/x)}^{2}

\Rightarrow {x}^{2}+{(1/x)}^{2}={y}^{2}-2

logo (*) sera

{y}^{2}-2-2y=0...

{y}^{2}-2y-2=0...

cujas raizes serao:

{y}_{(1,2)}=(2(+,-)\sqrt[]{6})/2

como y=x+(1/x)

retorne as equaçoes em x,termine como exercicio...

a equaçao (1) tera raizes complexo-conjugado,pois

p(0)=1\neq 0

{a}_{2}=0...
{a}_{3}.{a}_{1}=(-2).(-2)\succ 0

o calculo dessas raizes complexo-conjugado faremos adiante...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 989
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: continuaçao do exerc.EN-1937

Mensagempor adauto martins » Qui Nov 14, 2019 20:17

uma correçao:

{y}_{(1,2)}=(2(+,-)\sqrt[]{4-4.(-2)})/2=2(+,-)\sqrt[]{12})/2

{y}_{(1,2)}=(2(+,-)2\sqrt[]{3})/2=1(+,-)\sqrt[]{3}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 989
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}