• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido

exerc.resolvido

Mensagempor adauto martins » Ter Nov 05, 2019 22:05

(ITA-instituto tecnologico de aeronautica-exame vestibular ?)
em que intervalo estao as raizes da equaçao

{x}^{5}-5{x}^{4}+2{x}^{3}-6x-9=0?

a)[-150,200] b)[-14,-12] c)[12,13] d)[-10,10] e)n.d.r
Editado pela última vez por adauto martins em Ter Nov 05, 2019 22:38, em um total de 1 vez.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido

Mensagempor adauto martins » Ter Nov 05, 2019 22:37

soluçao:

vamos fazer a cota inferior,ou seja:

(-1).p(-x)={x}^{5}+5{x}^{4}+2{x}^{3}-6x+9=0

({x}^{5}+5{x}^{4}+2{x}^{3}-6x+9)/(x-1)={x}^{4}(x-1)+(9{x}^{4}+2{x}^{3}-6x+9)

...

({x}^{5}+5{x}^{4}+2{x}^{3}-6x+9)=(x-1)(x-2)(x-3)(x-4)+224...

logo a cota inferior sera de -4,ou seja [-4,{c}_{s}]...deixo o calculo da cota-superior,que pelo proprio polinomio e metodo de "laguerre" e menor que 10...das alternativas apresentadas,podemos "afirmar ser a letra d)...

podemos ainda usar:

\left|z \right|\preceq 1+\left|(max{({a}_{5},...,{a}_{0})/{a}_{n} \right|

onde (max{({a}_{5},...,{a}_{0}))
é o maior dos coefiecentes em em valor positivo de p(x)...em nosso caso

{a}_{0}=9

logo

\left|z \right|\preceq 1+\left|9/1 \right|=1+9=10\Rightarrow

\left|z \right|\preceq 10\Rightarrow -10\preceq z \preceq 10

[-10,10]...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1169
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.