• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Seg Set 16, 2019 15:51

(especex-escola preparatorio de cadetes do exercito-exame de admissao ao 1°ano-1952)
determinar o m.d.c de 4{x}^{4}-{x}^{2}+2x-1 e 2{x}^{3}-{x}^{2}-2x+1.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 973
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor DanielFerreira » Ter Set 17, 2019 12:45

Fatoremos \mathtt{2x^3 - x^2 - 2x + 1}...

\\ \displaystyle \mathsf{2x^3 - 2x - x^2 + 1 =} \\ \mathsf{2x \cdot (x^2 - 1) - 1 \cdot (x^2 - 1) =} \\ \mathsf{(x^2 - 1) \cdot (2x - 1) =} \\ \boxed{\mathsf{(x + 1)(x - 1)(2x - 1)}}

Por Briot-Rufini, podemos verificar se cada um dos fatores acima é comum a forma fatorada de \mathtt{4x^4 - x^2 + 2x - 1}. Segue,

- 1 | 4 ___ 0 ___ - 1 ___ 2 ___ - 1
___| 4 __ - 4 ____ 3 __ - 1 ___ 0

Ou seja, \mathtt{4x^4 - x^2 + 2x - 1 = (x + 1) \cdot (4x^3 - 4x^2 + 3x - 1)}


- 1 | 4 ___ 0 ___ - 1 ___ 2 ___ - 1
1/2| 4 __ - 4 ____ 3 __ - 1 ___ 0
___| 4 __ - 2 ____ 2 __0

Isto é, \mathtt{4x^4 - x^2 + 2x - 1 = (x + 1) \cdot \left \(x - \frac{1}{2} \right ) \cdot (4x^2 - 2x + 2)}


Resolvendo \mathtt{4x^2 - 2x + 2 = 0}, tiramos que as raízes não pertencem ao conjunto dos números reais, portanto, não há mais fatores comuns com o outro polinômio.

Logo, o MDC é \boxed{\boxed{\mathsf{(x + 1) \cdot (2x - 1)}}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1702
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.