por ezidia51 » Qui Set 05, 2019 15:09
Por favor aluém poderia me ajudar e checar se estes exercícios estão corretos?Obrigado
Ex 1 Analise as afirmações abaixo e assinale a alternativa correta:
A equação x²=1 tem apenas uma solução inteira.
No conjunto Z dos números inteiros, o intervalo 2 < x < 5 tem infinitos pontos.
Todo número inteiro x satisfaz a relação x² > 0.
Apenas a afirmação III é verdadeira.
Apenas a afirmação I é verdadeira.
Todas as afirmações são falsas.
As afirmações I e II são verdadeiras.
Todas as afirmações são verdadeiras.
Ex 2-Analise as afirmações abaixo e assinale a alternativa correta:
(a + b)2 = a2 + b2, para a e b inteiros quaisquer.
1/2 + 1/2 = 2/4.
3² = (-3)2 implica 3 = -3
Todas as afirmações são falsas.
Apenas a afirmação III é falsa.
Apenas a afirmação II é falsa.
Apenas a afirmação I é falsa.
Nenhuma afirmação é falsa.
Ex 3-Analise as afirmações abaixo e assinale a alternativa correta:
Se a < b, então a2< b2, para todo a, b inteiros.
Se a2< b2, então a < b, para todo a, b inteiros.
Se a divide b e a divide c, então a divide b+c, com a, b, c inteiros.
Apenas a afirmação I é verdadeira.
Apenas a afirmação II é verdadeira.
As afirmações I e II são verdadeiras.
Nenhuma afirmação é verdadeira.
Apenas a afirmação III é verdadeira.
Ex 4-Analise as afirmações abaixo e assinale a alternativa correta:
Se n^2 é par então n é par (n número inteiro).
Para todo n inteiro, tem-se que n + 1 ? n.
Todas as afirmações são verdadeiras.
Apenas a afirmação II é verdadeira.
Todas as afirmações são falsas.
Apenas a afirmação I é verdadeira.
Ex 5 -Analise as afirmações abaixo e assinale a alternativa correta:
No conjunto dos inteiros tem-se que a + b = a + c implica b = c.
No conjunto dos naturais vale o mesmo que em I.
Apenas a afirmação II é verdadeira.
Apenas a afirmação I é verdadeira.
Todas as afirmações são falsas.
Todas as afirmações são verdadeiras.
Ex 6- Analise as afirmações abaixo e assinale a alternativa correta:
Todo número natural é um número inteiro.
Todo número inteiro é um número natural.
Apenas a afirmação II é verdadeira.
Apenas a afirmação I é verdadeira.
Todas as afirmações são verdadeiras.
Todas as afirmações são falsas.
Ex 7-Analise as afirmações abaixo e assinale a alternativa correta:
a ? b implica a < b e a = b.
a^2 = b2 implica a = b.
Se a divide b e b divide a, então a = b.
Todas as afirmações são verdadeiras.
Apenas a afirmação I é verdadeira.
Todas as afirmações são falsas.
Apenas a afirmação III é verdadeira.
As afirmações I e II são verdadeiras.
Ex 8-Analise as afirmações abaixo e assinale a alternativa correta:
Sendo a e b números inteiros e se a ? b, então a divide b.
Não existe nenhum número primo par.
Todo número divisível por 2 é também divisível por 4.
Apenas a afirmação III é verdadeira.
Apenas a afirmação II é falsa.
Apenas a afirmação II é verdadeira.
Todas as afirmações são falsas.
Todas as afirmações são verdadeiras.
-
ezidia51
- Colaborador Voluntário

-
- Mensagens: 104
- Registrado em: Seg Mar 12, 2018 20:57
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: tecnico em enfermagem
- Andamento: formado
por DanielFerreira » Dom Jan 26, 2020 15:20
ezidia51, não coloque tantas questões num tópico. Procure postar uma questão por tópico!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LÓGICA] simplificação lógica e leis de equivalência
por MatheusComp606 » Qua Ago 24, 2016 16:13
- 1 Respostas
- 5278 Exibições
- Última mensagem por adauto martins

Seg Ago 29, 2016 15:34
Lógica
-
- [Polinômios] Grau do Polinômios e +
por Warioboy » Ter Mai 29, 2012 15:06
- 5 Respostas
- 7577 Exibições
- Última mensagem por Cleyson007

Dom Jun 03, 2012 16:18
Polinômios
-
- Lógica
por Neperiano » Qui Jun 19, 2008 16:48
- 17 Respostas
- 26071 Exibições
- Última mensagem por Neperiano

Sex Nov 11, 2011 15:51
Desafios Enviados
-
- lÓGICA
por Jaison Werner » Qui Set 15, 2011 11:28
- 2 Respostas
- 3399 Exibições
- Última mensagem por Neperiano

Qui Nov 10, 2011 15:31
Lógica e Conjuntos
-
- Lógica
por Pstefani » Ter Set 20, 2011 19:56
- 1 Respostas
- 2426 Exibições
- Última mensagem por MarceloFantini

Ter Set 20, 2011 21:40
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.