• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Valor de P

Valor de P

Mensagempor Octavia » Ter Dez 20, 2016 14:09

Os vértices de um triângulo ABC são os pontos A = (2,p), B = (4, 2) e C = (5, 3). Se a área desse triângulo vale 7 unidades, então o valor de p é:

a) 10
b) 12
c) 14
d) 16
Octavia
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Dez 19, 2016 15:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matematica
Andamento: cursando

Re: Valor de P

Mensagempor Cleyson007 » Sex Dez 23, 2016 23:33

Olá, boa noite!

Vou te dar as dicas para resolver este exercício:

1. Utilize as coordenadas e desenhe o triângulo no plano cartesiano.
2. A área do triângulo é calculada pela relação: (base x altura)/2.

Att,

Prof. Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1215
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}