• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Polinômios] como identificar o padrão?

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Ter Dez 13, 2016 09:24

Olá, amigo!
Gostaria da ajuda de vocês para identificar o padrão matemático que rege o problema abaixo:
polinomio.jpg


Pelo que pude entender o movimento não é uniforme. No final (no instante 7 segundos) a aceleração diminui.
Mas foi só isso que identifiquei.
Não sei por onde começar...
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Qui Dez 15, 2016 15:21

Joguei os dados no excel e obtive o seguinte gráfico:
Anexos
EXCEL.jpg
Gráfico
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Qui Dez 15, 2016 15:55

Peguei os pontos (5 segundos - 3090 cm/s) e (7 segundos - 3940 cm/s) e montei a equação geral da reta (da segunda parte da reta do gráfico), através do cálculo de determinante:
Anexos
Equacaogeral da reta.jpg
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Qui Dez 15, 2016 15:59

mas, quando preenchi os "buracos" da primeira tabela com os tempos que faltavam (4 segundos, 6 segundos), usando a equação geral da reta, obtive outro gráfico diferente:
... o que será que está errado?...
Anexos
outro grafico.jpg
Guga1981
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: [Polinômios] como identificar o padrão?

Mensagempor adauto martins » Sex Dez 16, 2016 10:59

a queda do paraquedista é regida pela equaçao:
m(dv/dt)=mg-k.{v}...,onde m=massa do paraq.,k=atrito devido ao ar...colocando na forma de uma EDO, teremos:
dv/dt+(k/m)v=g,cuja soluçao é dada por:
v=(mg/k)+C.{e}^{(-k/m).t},C é devido a integraçao indefinida da EDO...usa-se os dados da tabela pra achar m,k,C...como o problema pede um polinomio,entao deve-se usar a expansao de taylor da funçao {e}^{t}...,que é dado por:
{e}^{t}=1+t+{t}^{2}/2!+...+{t}^{n}/n!+...,q. em nosso caso:
{e}^{(-k/m)t}=1+(-k/m)t+(-k/m)^{2}{t}^{2}/2!+...+(-k/m)^{n}{t}^{n}/n!+...,o grau do polinomio sera dado em funçao da tabela...em se tratando de um problema de fisica classica,sera ate o segundo grau...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D