• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Polinômios] como identificar o padrão?

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Ter Dez 13, 2016 09:24

Olá, amigo!
Gostaria da ajuda de vocês para identificar o padrão matemático que rege o problema abaixo:
polinomio.jpg


Pelo que pude entender o movimento não é uniforme. No final (no instante 7 segundos) a aceleração diminui.
Mas foi só isso que identifiquei.
Não sei por onde começar...
Guga1981
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Qui Dez 15, 2016 15:21

Joguei os dados no excel e obtive o seguinte gráfico:
Anexos
EXCEL.jpg
Gráfico
Guga1981
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Qui Dez 15, 2016 15:55

Peguei os pontos (5 segundos - 3090 cm/s) e (7 segundos - 3940 cm/s) e montei a equação geral da reta (da segunda parte da reta do gráfico), através do cálculo de determinante:
Anexos
Equacaogeral da reta.jpg
Guga1981
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

[Polinômios] como identificar o padrão?

Mensagempor Guga1981 » Qui Dez 15, 2016 15:59

mas, quando preenchi os "buracos" da primeira tabela com os tempos que faltavam (4 segundos, 6 segundos), usando a equação geral da reta, obtive outro gráfico diferente:
... o que será que está errado?...
Anexos
outro grafico.jpg
Guga1981
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 18, 2015 13:27
Formação Escolar: ENSINO MÉDIO
Área/Curso: concursos
Andamento: cursando

Re: [Polinômios] como identificar o padrão?

Mensagempor adauto martins » Sex Dez 16, 2016 10:59

a queda do paraquedista é regida pela equaçao:
m(dv/dt)=mg-k.{v}...,onde m=massa do paraq.,k=atrito devido ao ar...colocando na forma de uma EDO, teremos:
dv/dt+(k/m)v=g,cuja soluçao é dada por:
v=(mg/k)+C.{e}^{(-k/m).t},C é devido a integraçao indefinida da EDO...usa-se os dados da tabela pra achar m,k,C...como o problema pede um polinomio,entao deve-se usar a expansao de taylor da funçao {e}^{t}...,que é dado por:
{e}^{t}=1+t+{t}^{2}/2!+...+{t}^{n}/n!+...,q. em nosso caso:
{e}^{(-k/m)t}=1+(-k/m)t+(-k/m)^{2}{t}^{2}/2!+...+(-k/m)^{n}{t}^{n}/n!+...,o grau do polinomio sera dado em funçao da tabela...em se tratando de um problema de fisica classica,sera ate o segundo grau...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}


cron