• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fatoração] fatoração de polinômio do quarto grau.

[fatoração] fatoração de polinômio do quarto grau.

Mensagempor +Danilo2 » Qui Set 29, 2016 10:43

Como fatorar esse polinômio, x^4 + 5x^2 + 4 , na forma de binômio?

Bom, eu tentei escreve-lo da seguinte forma (x^2 + \sqrt{4})(x^2 + \sqrt{4}). Como o segundo termo do binômio não gera o termo do meio do polinômio supracitado, permaneço com a dúvida.
+Danilo2
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 29, 2016 10:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor DanielFerreira » Sex Set 30, 2016 01:22

Olá Danilo, seja bem-vindo!

\\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}}

Espero ter ajudado!

A propósito, uma outra saída seria por "soma e produto" das raízes. Tome \mathsf{x^2 = k}, afim de visualizar com mais clareza, e aplique o "método".
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor Soprano » Sex Set 30, 2016 13:31

Olá,

Pode também ficar assim?

x^{4}+5x^{2}+4
x^{4}+3x^{2}+2x^{2}+4
x^{2}(x^{2}+3)+2(x^{2}+2)
(x^{2}+2)(x^{2}+3)
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor DanielFerreira » Sáb Out 01, 2016 20:51

Não. Os termos entre parênteses devem ser iguais, assim poderá colocá-los em evidência!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor Soprano » Dom Out 02, 2016 20:48

Não entendi, importa-se de explicar melhor? obrigado
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor +Danilo2 » Sáb Out 08, 2016 18:17

DanielFerreira escreveu: Olá Danilo. Seja bem vindo.

\\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}}

Espero ter ajudado!

A propósito, uma outra saída seria por "soma e produto" das raízes. Tome \mathsf{x^2 = k}, afim de visualizar com mais clareza, e aplique o "método".



Muito obrigado pela ajuda
+Danilo2
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 29, 2016 10:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}