• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[fatoração] fatoração de polinômio do quarto grau.

[fatoração] fatoração de polinômio do quarto grau.

Mensagempor +Danilo2 » Qui Set 29, 2016 10:43

Como fatorar esse polinômio, x^4 + 5x^2 + 4 , na forma de binômio?

Bom, eu tentei escreve-lo da seguinte forma (x^2 + \sqrt{4})(x^2 + \sqrt{4}). Como o segundo termo do binômio não gera o termo do meio do polinômio supracitado, permaneço com a dúvida.
+Danilo2
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 29, 2016 10:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor DanielFerreira » Sex Set 30, 2016 01:22

Olá Danilo, seja bem-vindo!

\\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}}

Espero ter ajudado!

A propósito, uma outra saída seria por "soma e produto" das raízes. Tome \mathsf{x^2 = k}, afim de visualizar com mais clareza, e aplique o "método".
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor Soprano » Sex Set 30, 2016 13:31

Olá,

Pode também ficar assim?

x^{4}+5x^{2}+4
x^{4}+3x^{2}+2x^{2}+4
x^{2}(x^{2}+3)+2(x^{2}+2)
(x^{2}+2)(x^{2}+3)
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor DanielFerreira » Sáb Out 01, 2016 20:51

Não. Os termos entre parênteses devem ser iguais, assim poderá colocá-los em evidência!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1681
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor Soprano » Dom Out 02, 2016 20:48

Não entendi, importa-se de explicar melhor? obrigado
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: [fatoração] fatoração de polinômio do quarto grau.

Mensagempor +Danilo2 » Sáb Out 08, 2016 18:17

DanielFerreira escreveu: Olá Danilo. Seja bem vindo.

\\ \mathsf{x^4 + 5x^2 + 4 =} \\\\ \mathsf{x^4 + (4x^2 + x^2) + 4 =} \\\\ \mathsf{(x^4 + 4x^2) + (x^2 + 4) =} \\\\ \mathsf{x^2(x^2 + 4) + 1(x^2 + 4) =} \\\\ \mathsf{(x^2 + 4)[x^2 + 1]} = \\\\ \boxed{\mathsf{(x^2 + 4)(x^2 + 1)}}

Espero ter ajudado!

A propósito, uma outra saída seria por "soma e produto" das raízes. Tome \mathsf{x^2 = k}, afim de visualizar com mais clareza, e aplique o "método".



Muito obrigado pela ajuda
+Danilo2
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Qui Set 29, 2016 10:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.