• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto da soma pela diferença - ordem do raciocinio

Produto da soma pela diferença - ordem do raciocinio

Mensagempor Soprano » Qui Mar 03, 2016 09:17

Olá a todos,
O objectivo do exercico é encontrar o conjunto de solução da equações de segundo grau (função quadrática). Posso aplicar o produto da soma pela diferença desta forma?

2x²+2x-12=0
2(x²+x-6)
2(x-2)(x+3)
x-2=0 v x+3=0
x=2 v x=-3

Não estou a conseguir resolver o exercicio sem aplicar assim o produto da soma pela diferença.
Obrigado
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Produto da soma pela diferença - ordem do raciocinio

Mensagempor DanielFerreira » Sáb Mar 05, 2016 05:02

Olá!
Tua resposta está correcta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Produto da soma pela diferença - ordem do raciocinio

Mensagempor Soprano » Seg Mar 07, 2016 12:57

Obrigado pela resposta,

Sempre pensei que o produto da soma pela diferença apenas podesse ser exposto desta forma (x+a)(x-b). Mas depois fiz os calculos com ambos os modelos, (x+a)(x-b) e (x-a)(x-b), e descobri que era o mesmo!

Mas isto faz sentido?

(x+5)(x-9) = x²-4x-45

(x-5)(x+9) = x²+4x-45

Ou não é possível?
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Produto da soma pela diferença - ordem do raciocinio

Mensagempor DanielFerreira » Ter Mar 08, 2016 21:47

Soprano, boa noite!

Inicialmente, tomemos como exemplo os números 3 e 4. O produto da soma pela diferença entre eles é dado por: (4 + 3) \cdot (4 - 3) = 7

Supomos agora que os números em questão não sejam conhecidos; sejam a e b tais números, então o produto da soma pela diferença é dado por (a + b) \cdot (a - b).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59