• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Polinômios] Prova da fuvest 2ª fase

[Polinômios] Prova da fuvest 2ª fase

Mensagempor vlopagliuca » Qua Dez 12, 2012 15:35

Eu procurei por este exercício nos tópicos mas não achei,se for repetido me desculpem.

O polinômio ,o p(x) = x^4+ax³+bx²+cx-8, em que a, b, c são números reais, tem o número complexo 1 + i como raiz, bem como duas raízes simétricas.

a) Determine a, b, c e as raízes de p(x).
b) Subtraia 1 de cada uma das raízes de p(x) e determine todos os polinômios com coeficientes reais, de menor grau, que possuam esses novos valores como raízes.

Eu comecei procurando fazer uma espécie de simplificação da equação em o que deveria ser um sistema,mas no meio do caminho eu travei.
(1+i)^4 +a(1+i)².(1+i)+b(1+i)²+c(1+i)-8=0
(1+i)².(1+i)²+a(1+i)².(1+i)+b(1+i)²+c(1+i)=8
(2i.2i)+a(2i)(1+i)+b(2i)+c+ci=8
-4+a2i+(-2)a+b2i+c+ci=8
2i(a+b)+(-2)a+c+ci=12

Neste momento eu travei,se puderem me ajudar e e dizer onde errei,ou melhor,como devo começar,seria muito útil.Obrigado!
vlopagliuca
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 12, 2012 14:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Polinômios] Prova da fuvest 2ª fase

Mensagempor young_jedi » Qua Dez 12, 2012 21:14

primeiro voce tem que se 1+i é raiz então 1-i tambem é raiz
outra coisa é que possui raizes simetricas ou seja uma raiz n e outra -n

então utilizando as relações de Girard

(1+i)(1-i)(-n).n=-8

-n^2.2=-8

n^2=4

n=2

então as raize simetricas são -2 e 2 e as complexas (1+i) e (1-i) então voce pelas relações de Gerardi pode determinar os demais coeficientes.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59