• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.resolvido

exerc.resolvido

Mensagempor adauto martins » Ter Nov 05, 2019 22:05

(ITA-instituto tecnologico de aeronautica-exame vestibular ?)
em que intervalo estao as raizes da equaçao

{x}^{5}-5{x}^{4}+2{x}^{3}-6x-9=0?

a)[-150,200] b)[-14,-12] c)[12,13] d)[-10,10] e)n.d.r
Editado pela última vez por adauto martins em Ter Nov 05, 2019 22:38, em um total de 1 vez.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.resolvido

Mensagempor adauto martins » Ter Nov 05, 2019 22:37

soluçao:

vamos fazer a cota inferior,ou seja:

(-1).p(-x)={x}^{5}+5{x}^{4}+2{x}^{3}-6x+9=0

({x}^{5}+5{x}^{4}+2{x}^{3}-6x+9)/(x-1)={x}^{4}(x-1)+(9{x}^{4}+2{x}^{3}-6x+9)

...

({x}^{5}+5{x}^{4}+2{x}^{3}-6x+9)=(x-1)(x-2)(x-3)(x-4)+224...

logo a cota inferior sera de -4,ou seja [-4,{c}_{s}]...deixo o calculo da cota-superior,que pelo proprio polinomio e metodo de "laguerre" e menor que 10...das alternativas apresentadas,podemos "afirmar ser a letra d)...

podemos ainda usar:

\left|z \right|\preceq 1+\left|(max{({a}_{5},...,{a}_{0})/{a}_{n} \right|

onde (max{({a}_{5},...,{a}_{0}))
é o maior dos coefiecentes em em valor positivo de p(x)...em nosso caso

{a}_{0}=9

logo

\left|z \right|\preceq 1+\left|9/1 \right|=1+9=10\Rightarrow

\left|z \right|\preceq 10\Rightarrow -10\preceq z \preceq 10

[-10,10]...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}