• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcule os valores reais de x...

calcule os valores reais de x...

Mensagempor willwgo » Qui Abr 28, 2011 18:15

Calcule os valores reais de x para que:
{x}^{3}+{2x}^{2}+8x+7=0,sabendo que o polinomio
p(x)={x}^{3}+{2x}^{2}+8x+7 é divisivel por x+1.

me ajudem ai tentei de todas as formas entender o enunciado mais nau consegui chegar a nenhuma resposta
me ajudem ai.
eu tentei usar a formula de B. ruffini mais da uma equaçao do 2° grau q nau tem soluçao!
qual formula devo usar ou onde estou errando!
obrigado
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor Molina » Qui Abr 28, 2011 18:56

Boa tarde.

Quando você diz que não tem solução a equação do 2o grau é nos números Reais, certo? Mas elas existem no conjunto dos complexos...


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor willwgo » Sex Abr 29, 2011 17:35

é q o delta deu um valor negativo!
vc poderia me passar a resposta q vc axou p/ eu tentar chegar a tal resposta sozinho!

obrigado
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor Renato_RJ » Sex Abr 29, 2011 21:11

Campeão, se o polinômio p(x) é divisível por (x+1) então teremos:

P(x) = Q(x) \cdot (x+1)

Digo isso, pois como foi dito no enunciado P(x) é divisível por (x+1), logo não há resto.

Como você mesmo disse, Q(x) será um polinômio de 2º grau com delta negativo, logo suas raízes não pertencem ao domínio dos Reais, mas lembre-se que P(x) é igual ao Q(x) * (x+1), então uma das raízes pertence a x+1, logo será -1 (que pertence aos Reais).

Acho que a resposta que você procura seja essa.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}