• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Série de Potencias Complexos

Série de Potencias Complexos

Mensagempor Russman » Qui Out 04, 2012 21:24

Eu preciso de ajuda na seguinte questão:

Represente a função

f(z) = \frac{z}{(z-1)(z-3)}

por meio de uma série de potências positivas e negativas de (z-1) que convirja para f(z) quando 0<\left|z-1 \right|<2.


Eu sei que como a função possui pontos singulares existirão termos da sequencia de Taylor de Laurent. Mas eu não sei em torno de qual ponto eu devo fazer a expansão. Eu imagino que devo fazer em torno de z=1. Mas esse ponto dá problema na derivada n-ésima de f(z). E no mais a função possui 2 pontos singulares. Não sei como proceder.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Série de Potencias Complexos

Mensagempor young_jedi » Qui Out 04, 2012 22:06

\frac{z}{(z-1)(z-3)}=\frac{1}{2}.\left(\frac{3}{z-3}-\frac{1}{z-1}\right)

um termo da serie é

-\frac{1}{z-1}

ai pros outros termos voce aplica a derivada pra achar a serie de potencias de \frac{3}{z-3}
a serie é em torno do ponto 1 mesmo.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1238
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: Série de Potencias Complexos

Mensagempor Russman » Qui Out 04, 2012 22:20

Valeeu amigo! Consegui.

:y:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.