• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[números complexos] raiz cúbica

[números complexos] raiz cúbica

Mensagempor JKS » Dom Set 23, 2012 01:26

Me ajude... desde já agradeço

Se 3+4i é raiz cúbica de um complexo z, então o produto das outras raízes cúbicas de z é:
JKS
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Qua Ago 01, 2012 13:13
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [números complexos] raiz cúbica

Mensagempor young_jedi » Dom Set 23, 2012 13:48

veja que 3 e 4 são os catetos do triangulo que tem a hipotenusa como sendo 5

então podemos escrever

5cos\theta+5i.sen\theta

5(cos\theta+i.sen\theta)

utlilizando a relação de Euler

5(cos\theta+i.sen\theta)&=&5e^{i.\theta}

como isto é raiz cubica de z, então:

z&=&5^3.e^{i.3.\theta}

mas temos que:

z&=&5^3.e^{i.3.\theta}&=&5^3.e^{i.(3.\theta+2\pi)}

e ainda

z&=&5^3.e^{i.3.\theta}&=&5^3.e^{i.(3.\theta+4\pi)}

tirando a raiz cubica desses dois numeros temos

r1&=&5.e^{i.(\theta+\frac{2\pi}{3})}

r2&=&5.e^{i.(\theta+\frac{4\pi}{3})}

então o produto dos dois

r1.r2&=&5.e^{i.(\theta+\frac{4\pi}{3})}.5.e^{i.(\theta+\frac{2\pi}{3})}

r1.r2&=&5^2.e^{i.(2\theta+\frac{2\pi}{3}+\frac{4\pi}{3})}

r1.r2&=&5^2.e^{i.(2\theta+2\pi)}

r1.r2&=&5^2.e^{i.2\theta}

r1.r2&=&5^2.cos(2\theta)+i.5^2sen(2\theta)

r1.r2&=&5^2.cos(\theta+\theta)+i.5^2sen(\theta+\theta)

r1.r2&=&5^2.(cos^2\theta-sen^2\theta)+i.5^2.2cos\theta.sen\theta

r1.r2&=&5^2.cos^2\theta-5^2sen^2\theta+i.2.5cos\theta.5sen\theta

substituindo da relação inicial

r1.r2&=&3^2-4^2+i.2.3.4

r1.r2&=&-7+i.24
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}