por MariPC » Sáb Ago 15, 2009 15:56
Olá gostaria de saber se tendo as raízes complexas de uma equação é possível encontrar essa equação.
Sei que com raízes reais é possivel, mas com as complexas não me lembro.
Grata
-
MariPC
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Ago 15, 2009 01:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura em matemática
- Andamento: formado
por Felipe Schucman » Sáb Ago 15, 2009 17:35
É sim possivel utilize o mesmo principio das reais....
-
Felipe Schucman
- Usuário Parceiro

-
- Mensagens: 52
- Registrado em: Ter Jul 28, 2009 17:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia e Direito
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Polinômios - Raízes complexas
por Malorientado » Dom Out 07, 2012 15:45
- 3 Respostas
- 1853 Exibições
- Última mensagem por MarceloFantini

Dom Out 07, 2012 20:21
Polinômios
-
- [raízes de números complexos] Raízes de uma equação com grau
por karenfreitas » Seg Ago 22, 2016 19:08
- 1 Respostas
- 7985 Exibições
- Última mensagem por adauto martins

Sáb Ago 27, 2016 16:11
Números Complexos
-
- Raízes da equação
por Andreza » Ter Nov 01, 2011 12:31
- 3 Respostas
- 1550 Exibições
- Última mensagem por Andreza

Ter Nov 01, 2011 18:04
Trigonometria
-
- Raízes da equação
por Andreza » Seg Nov 14, 2011 14:47
- 1 Respostas
- 1114 Exibições
- Última mensagem por MarceloFantini

Seg Nov 14, 2011 19:19
Funções
-
- Equação Raízes
por LuizCarlos » Seg Mai 07, 2012 13:59
- 2 Respostas
- 1309 Exibições
- Última mensagem por Cleyson007

Seg Mai 07, 2012 14:50
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
cálculo de limites
Autor:
Hansegon - Seg Ago 25, 2008 11:29
Bom dia.
Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado
\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]
Assunto:
cálculo de limites
Autor:
Molina - Seg Ago 25, 2008 13:25
Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.
Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo.
Caso ainda não tenha dado uma

, avisa que eu resolvo.
Bom estudo!
Assunto:
cálculo de limites
Autor:
Guill - Dom Abr 08, 2012 16:03

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.