por mario237 » Dom Fev 19, 2012 17:45
sendo p um numero primo.Quantos dividores p2 possui? (Justifique a resposta.). Respondi:Possui 3 divisores, pois se considerarmos, por exemplo: p² = 2² achamos o total de divisores através de (k1 + 1) onde k1 = 2 (2 o expoente), assim (2 + 1) = 3 divisores.
Numa decomposição de 4 por exemplo: 4 = 2²
Divisores de 4 são {1, 2, 4}, portanto 3 divisores. Porem tenho duvida,porque o produto de dois números primos resulta em um numero composto, e se tivermos no conjunto dos inteiros pode existir outros divisores (1-,-2,-4)???me ajudem
-
mario237
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Fev 19, 2012 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura matematica
- Andamento: cursando
por fraol » Dom Fev 19, 2012 23:14
Usando o número 4 do seu exemplo, embora ele não seja primo, penso que você raciocinou assim:

então você pegou o expoente do fator primo e somou 1, assim obteve 3 divisores. Certo?
Esse raciocínio está correto e pode ser estendido para os casos com mais de um fator primo, por exemplo:

assim a quantidade de divisores é

.
Voltando aos números primos. No caso de um número primo

elevado ao quadrado teremos

que é a própria representação em fatores primos. Então a quantidade de divisores será

divisores.
Isso ajuda?
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por mario237 » Seg Fev 20, 2012 14:54
Obrigado, agora entendi, quando vc fala que (P) elevado ao quadrado é a propria representação em fatores primos ficou bem claro saber quantos divisores p2 possui.
-
mario237
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Fev 19, 2012 11:52
- Formação Escolar: GRADUAÇÃO
- Área/Curso: licenciatura matematica
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Teoria Números] Algoritmo Não Interceptação Números Primos
por WillamesSilva » Qua Out 26, 2016 12:21
- 8 Respostas
- 17195 Exibições
- Última mensagem por WillamesSilva

Ter Nov 22, 2016 15:33
Aritmética
-
- Números primos
por mony0771 » Qui Abr 23, 2009 10:54
- 2 Respostas
- 4104 Exibições
- Última mensagem por mony0771

Qui Abr 23, 2009 15:28
Álgebra Elementar
-
- Numeros Primos
por Neperiano » Sex Abr 24, 2009 20:15
- 6 Respostas
- 5718 Exibições
- Última mensagem por Neperiano

Sáb Abr 25, 2009 10:23
Problemas do Cotidiano
-
- Números Primos
por Abelardo » Qua Mar 09, 2011 21:38
- 1 Respostas
- 3058 Exibições
- Última mensagem por Abelardo

Qua Mar 09, 2011 21:41
Álgebra Elementar
-
- OBM - Números primos
por Abelardo » Sáb Mar 12, 2011 16:54
- 4 Respostas
- 4687 Exibições
- Última mensagem por Abelardo

Dom Mar 13, 2011 13:26
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.