• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Argumento que forma círculo

Argumento que forma círculo

Mensagempor SM- » Ter Mar 22, 2011 21:12

Olá!

Estou enfrentando um problema de números complexos que diz o seguinte:

"Explique porque o conjunto de pontos que satisfaz arg(\frac{z - a}{z - b}),onde a e b são números complexos distintos, é um círculo."

Procurei em livros e na internet e achei o seguinte:

arg(\frac{z-i}{z-1}) = \frac{\pi}{2}

Primeiro: Por que para ser o círculo o ângulo tem de ser de 90°?

Bom, tentei me utilizar da segunda etapa e fiz o seguinte:

arg(\frac{z-i}{z-1}) = \frac{\pi}{2} será arg(z-i) - arg(z-1) = \frac{\pi}{2}

sendo assim:

arctg(\frac{b-1}{a})  - arctg(\frac{b}{a-1})= \frac{\pi}{2}

Mas não consigo sair daqui de maneira nenhuma. Como proceder? É assim mesmo? Achei um fórum dizendo que:

arg(\frac{z-i}{z-1}) = ir Já que é 90° e assim ele foi indo e separou em parte real e imaginária, mas não entendi exatamente.

segue o link: http://www.physicsforums.com/showthread.php?t=432046

Aguardo ajuda!
SM-
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mar 22, 2011 20:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Elétrica
Andamento: cursando

Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.