por Anniinha » Dom Out 31, 2010 02:32
como se resolve essa questão:
z² - (8 - 5i)z + 40 - 20i = 0??
o que eu ja fiz:
![z = - (8-5i) \frac{+}{} [\right]\sqrt[]{(8 - 5i)^{2} - (4).(1).(-20)}\left] / 2 z = - (8-5i) \frac{+}{} [\right]\sqrt[]{(8 - 5i)^{2} - (4).(1).(-20)}\left] / 2](/latexrender/pictures/b0f1b1348627677628aa3c7c567a658e.png)
colocando o 2 para dentro da raíz:
![z= \frac{-8 + 5i}{2} \frac{+}{} \sqrt[]{\frac{89}{4}+ 20i} z= \frac{-8 + 5i}{2} \frac{+}{} \sqrt[]{\frac{89}{4}+ 20i}](/latexrender/pictures/f0f99bacf59763c64689d40d3d13b5c8.png)
depois tentei resolver a raiz.
onde tenho que
![z = \frac{89}{4}+ 20i ; n=2 ; \left|r \right| = 895 >>\left|r \right|= \sqrt[]{{x}^{2} + {y}^{2}} z = \frac{89}{4}+ 20i ; n=2 ; \left|r \right| = 895 >>\left|r \right|= \sqrt[]{{x}^{2} + {y}^{2}}](/latexrender/pictures/fb5a9b39ab9a932499cfbfacd8d8deb2.png)
depois disso nao sei fazer, estou me complicando também na hora de calcular o teta, que eu sei que é a

, soh lembrando que z = x + iy
entao, alguém pode me ajudar?? ^^
-

Anniinha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Dom Out 31, 2010 01:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Geofísica
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- equação do 2ºgrau
por jose henrique » Seg Set 13, 2010 09:26
- 5 Respostas
- 3336 Exibições
- Última mensagem por Douglasm

Dom Set 19, 2010 09:44
Álgebra Elementar
-
- equação do 2ºgrau
por malcionio » Dom Jun 24, 2012 11:29
- 3 Respostas
- 2220 Exibições
- Última mensagem por e8group

Dom Jun 24, 2012 18:46
Sistemas de Equações
-
- Finalizando uma Eq do 2ºGrau
por leticiamarinho_ » Dom Mar 13, 2011 14:16
- 7 Respostas
- 3862 Exibições
- Última mensagem por LuizAquino

Seg Mar 14, 2011 14:30
Álgebra Elementar
-
- [Funções] Achar a intersecção da parábola 2ºgrau
por thoamas343 » Ter Mar 21, 2017 18:42
- 1 Respostas
- 2982 Exibições
- Última mensagem por petras

Qui Mar 23, 2017 18:28
Funções
-
- Equação - Dúvida básica sobre a proporcionalidade de equação
por FelipeGM » Qui Jan 12, 2012 19:05
- 4 Respostas
- 7523 Exibições
- Última mensagem por FelipeGM

Sáb Jan 14, 2012 13:16
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.