• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Nº complexos

Nº complexos

Mensagempor geriane » Seg Jul 05, 2010 14:06

Obtenha a forma trigonométrica do complexo z, tal que z = 2i(1+i).
Resultado é 2\sqrt[]{2}\left(cos\frac{3\pi}{4}+isen\frac{3\pi}{4} \right).
Desde já obrigada.
geriane
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 38
Registrado em: Sáb Abr 03, 2010 10:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura
Andamento: formado

Re: Nº complexos

Mensagempor Elcioschin » Seg Jul 05, 2010 15:29

z = 2i*(1 + i) ----> z = 2i + 2i² ----> z = 2i + 2*(-1) ----> z = 2i - 2 ----> z = - 2 + 2i ----> z = 2*(- 1 + i)

z = 2*V2*(- V2/2 + i*V2/2)

z = 2*V2*[cos(3pi/4) + i*sen3pi/4)]
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.