• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exerc.proposto

exerc.proposto

Mensagempor adauto martins » Seg Set 16, 2019 16:09

(este-ita-escola tecnica do exercito,instituto tecnologico de aeronautica-exame de admissao 1947)
determinar os numeros complexos que gozam da propriedade de ter o quadrado e o complexo conjugado identicos.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor DanielFerreira » Ter Set 17, 2019 12:04

adauto martins escreveu:(este-ita-escola tecnica do exercito,instituto tecnologico de aeronautica-exame de admissao 1947)
determinar os numeros complexos que gozam da propriedade de ter o quadrado e o complexo conjugado identicos.


Seja \mathbf{z = a + bi}, com \mathtt{a, b \in \mathbb{R}} o número complexo em questão. Portanto, ele deverá satisfazer

\mathbf{(a + bi)^2 = a - bi}

Segue,

\\ \mathsf{(a + bi)^2 = a - bi} \\ \mathsf{a^2 + 2abi - b^2 = a - bi} \\ \mathsf{(a^2 - b^2) + 2abi = a - bi}

Comparando parte real e imaginária, teremos:

\begin{cases}\mathsf{a^2 - b^2 = a \quad \ \qquad (i)} \\ \mathsf{2ab = - b \qquad \qquad (ii)} \end{cases}


Resolvendo (ii),

\\ \mathsf{2ab = - b} \\ \mathsf{2ab + b = 0} \\ \mathsf{b(2a + 1) = 0}


CASO I: \mathtt{b \neq 0}

\\ \mathsf{2a + 1 = 0} \\ \boxed{\mathsf{a = - \frac{1}{2}}}

Substituindo em (i),

\\ \mathsf{a^2 - b^2 = a} \\\\ \mathsf{b^2 = \frac{1}{4} + \frac{1}{2}} \\\\ \mathsf{b = \pm \frac{\sqrt{3}}{2}}

Logo, \boxed{\boxed{\mathsf{z_1 = - \frac{1}{2} + \frac{i\sqrt{3}}{2}}}} e \boxed{\boxed{\mathsf{z_2 = - \frac{1}{2} - \frac{i\sqrt{3}}{2}}}}


CASO II: \mathtt{b = 0}

Substituindo em (ii),

\\ \mathsf{a^2 - b^2 = a} \\\\ \mathsf{a^2 - a = 0} \\\\ \mathsf{a(a - 1) = 0} \\\\ \mathsf{S_a = \left \{ 0, 1 \right \}}

Logo, \boxed{\boxed{\mathsf{z_3 = 0}}} e \boxed{\boxed{\mathsf{z_4 = 1}}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1729
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: exerc.proposto

Mensagempor adauto martins » Dom Set 22, 2019 12:01

soluçao correta:
{z}^{2}\in \Re\Rightarrow {z}^{2}=\left|({z}^{-}) \right|,pois ({z}^{-})\in C e onde({z}^{-}) e o complexo conjudao de z...,logo:
{z}^{2}=\sqrt[]{z.({z}^{-})}\Rightarrow {z}^{4}-z.({z}^{-})=0

z.({z}^{3}-({z}^{-})=0\Rightarrow z=0,{z}^{3}=({z}^{-})...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Dom Set 22, 2019 12:17

correçao:
cometi um erro grave,pois {z}^{2}\in C,pois z=x+yi\Rightarrow {z}^{2}=({x}^{2}-{y}^{2})+2xyi...
logo a soluçao do colega daniel e a soluçao correta...obrigado...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exerc.proposto

Mensagempor adauto martins » Sex Out 11, 2019 10:34

usando a soluçao anterior,faremos uma soluçao mais geral que a feita pelo colega daniel,que esta correta:

{z}^{2}={z}^{-}\Rightarrow({r.{e}^{i\theta})^{2}=r.{e}^{-i\theta}

r=1...2\theta=-\theta + 2k\pi...\theta=2k\pi/3...

z=cos(2k\pi/3)+ sen(2k\pi/3)i...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.