• Anúncio Global
    Respostas
    Exibições
    Última mensagem

somatória com número complexo

somatória com número complexo

Mensagempor ezidia51 » Qua Abr 04, 2018 17:44

Alguém pode me ajudar com esta somatória de número complexo?
\sum_{n=1}^{20.241} i^n sendo que i^2=-1
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: somatória com número complexo

Mensagempor Gebe » Qui Abr 05, 2018 01:22

Nesse tipo de questao (somatorias e sequencias) é sempre interessante escreve um pedaço da somatoria para melhor avalia-la. Sendo assim podemos escrever alguns termos:
\sum_{1}^{20241}i^n=(i)+(-1)+(-i)+(1)+(i)+(-1)+(-i)+(1)+(i)...

Consegue ver um padrão? Perceba que temos sempre termos se cancelando, veja, por exemplo, que o 1° termo se cancela com o 3° e o 2° com o 4°.
Esse comportamento acontece de 4 em 4 termos, ou seja, passados 4 termos a sequencia se repete.

Apenas com isso ja temos apenas 4 alternativas, podemos acabar o somatorio com todos termos cancelados resultando 0, podemos acabar no termo i (resultando i), no termo -1 (resultando i-1) e no termo -i (resultando -1).

Para saber qual dessas é a nossa resposta basta dividirmos o numero de termos do somatorio por 4, ou seja, queremos saber quantas daquelas sequencias que mencionamos cabem no somatorio.

\\
\frac{20241}{4}=5060+\frac{1}{4}

Couberam 5060 sequencias e sobrou ainda um termo, ou seja, o ultimo termo do somatorio i^20241 seria o começo de uma nova sequencia, portanto nossa resposta é i (todos outros termos se cancelaram).

Espero ter ajudado, qualquer duvida mande msg. Bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: somatória com número complexo

Mensagempor ezidia51 » Qui Abr 05, 2018 13:08

Um super muito obrigado!!!! :y: :y: :y: :y: :y: :y: Você tem me ajudado muito !!!Muito obrigado mesmo!!!
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: somatória com número complexo

Mensagempor Gebe » Qui Abr 05, 2018 13:32

:y:
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59