• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Numeros Complexos] Forma polar e cartesiana de w1 e w2

[Numeros Complexos] Forma polar e cartesiana de w1 e w2

Mensagempor karenfreitas » Dom Dez 04, 2016 16:36

Seja w1 = (j +e ^{\frac{j\pi}{3}) e w2 = (3e^{\frac{-j\pi}{6}}). Escreva (w1+w2) nas formas cartesiana e polar, determine o módulo de z = w1.w2

Estou com dificuldade em transformar o w1, por causa desse primeiro j. Olhei um exemplo e vi que colocaram \frac{1}{2}. Gostaria de saber se é isso mesmo que devo considerar e com isso o restante da questão fica dependente de achar como w1 seria representado. Outra dúvida é quando se fala em módulo devo desprezar sinais negativos que por acaso eu achar? A multiplicação fica um pouco menos complicada na forma polar, então quando ele pede z, devo voltar para a forma polar...

Agradeço desde já quem puder ajudar :)
karenfreitas
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 04, 2016 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.