• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[raízes de números complexos] Raízes de uma equação com grau

[raízes de números complexos] Raízes de uma equação com grau

Mensagempor karenfreitas » Seg Ago 22, 2016 19:08

Resolva a equação:

6z^4-25z^3+32z^2+3z-10=0

Agradeço a ajuda prestada para como proceder com essa questão.
karenfreitas
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 04, 2016 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [raízes de números complexos] Raízes de uma equação com

Mensagempor adauto martins » Sáb Ago 27, 2016 16:11

temos um polinomio de quarto grau(4 raizes reais ou complexas)com coeficientes de num.inteiros,logo teremos
q. existe pelo menos um p/q onde p,q \in Z/mdc(p,q)=1,ou seja primos entre si...essa ou essas raizes sairao dos divisores de p,q...onde p/10...q/6...logo o conjunto onde ha possibilidade de termos uma raiz sera:
{{+}_{-}1,2,3,5,6,10,1/2,1/3,1/6,2/3,2/5,5/2,5/6,}...o raio de existencia das possiveis raizes é dado por:
\rho = 1+ \left|max({a}_{k})/{a}_{n} \right| p/0\preceq k \prec n...em nosso caso \rho =1+ 32/6=38/6\approx 6.3...[-6.3,6.3]...entao do conj. das possiveis raizes tiramos apenas o num.10...e agora é testar uma por uma e encontrar uma ou mais raizes racionais...se \alpha,ai faremos q.
p(z)=(x-\alpha).(a{x}^{3}+b{x}^{2}+cx+d),ou seja vai baixando o grau do polinomio,ate chegarmos a um polinomio de segundo grau,onde possivelmente encontraremos raizes reais ou complexas...é pór ai,nao é facil,é calculo e calculos...maos a obra...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.