• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[raízes de números complexos] Raízes de uma equação com grau

[raízes de números complexos] Raízes de uma equação com grau

Mensagempor karenfreitas » Seg Ago 22, 2016 19:08

Resolva a equação:

6z^4-25z^3+32z^2+3z-10=0

Agradeço a ajuda prestada para como proceder com essa questão.
karenfreitas
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 04, 2016 14:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [raízes de números complexos] Raízes de uma equação com

Mensagempor adauto martins » Sáb Ago 27, 2016 16:11

temos um polinomio de quarto grau(4 raizes reais ou complexas)com coeficientes de num.inteiros,logo teremos
q. existe pelo menos um p/q onde p,q \in Z/mdc(p,q)=1,ou seja primos entre si...essa ou essas raizes sairao dos divisores de p,q...onde p/10...q/6...logo o conjunto onde ha possibilidade de termos uma raiz sera:
{{+}_{-}1,2,3,5,6,10,1/2,1/3,1/6,2/3,2/5,5/2,5/6,}...o raio de existencia das possiveis raizes é dado por:
\rho = 1+ \left|max({a}_{k})/{a}_{n} \right| p/0\preceq k \prec n...em nosso caso \rho =1+ 32/6=38/6\approx 6.3...[-6.3,6.3]...entao do conj. das possiveis raizes tiramos apenas o num.10...e agora é testar uma por uma e encontrar uma ou mais raizes racionais...se \alpha,ai faremos q.
p(z)=(x-\alpha).(a{x}^{3}+b{x}^{2}+cx+d),ou seja vai baixando o grau do polinomio,ate chegarmos a um polinomio de segundo grau,onde possivelmente encontraremos raizes reais ou complexas...é pór ai,nao é facil,é calculo e calculos...maos a obra...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 679
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: