• Anúncio Global
    Respostas
    Exibições
    Última mensagem

<=====Números Complexos-Média Geométrica=====>

<=====Números Complexos-Média Geométrica=====>

Mensagempor futuromilitar » Qui Mai 26, 2016 22:08

Sendo P(X)= x^3+x^2+x+a divisível por (x-1), a média geometrica das raízes complexas é:

a)1
b)\sqrt[2]{i}
c)-\sqrt[2]{i}
d)i
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
Avatar do usuário
futuromilitar
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mai 19, 2016 17:50
Localização: Itapajé,Ceará,Brasil
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Contabilidade
Andamento: formado

Re: <=====Números Complexos-Média Geométrica=====>

Mensagempor DanielFerreira » Ter Mai 31, 2016 00:44

Ora, se P(x) é divisível por (x - 1), então P(1) = 0.

Com isso,

\\ P(x) = x^3 + x^2 + x + a \\ P(1) = 1 + 1 + 1 + a \\ a + 3 = 0 \\ \boxed{a = - 3}

Efectuando a divisão,

+ x³ + x² + x - 3 | x - 1
--------------------| x² + 2x + 3
+ x³ + x²
- x³ + x²
---------------------
+ 2x² + x - 3
- 2x² + 2x
---------------------
+ 3x - 3
- 3x + 3
---------------------
0

Resolvendo a equação x^2 + 2x + 3 = 0:

\\ x^2 + 2x + 3 = 0 \\\\ \Delta = 4 - 12 \\\\ \Delta = - 8 \\\\ \Delta = 8i^2 \\\\ x = \frac{- 2 \pm 2i\sqrt{2}}{2} \\\\ \boxed{x = - 1 \pm i\sqrt{2}}

Por fim, calculamos a média geométrica entre (- 1 - i\sqrt{2}) e (- 1 + i\sqrt{2}). Daí,

\\ M_g = \sqrt[2]{(- 1 - i\sqrt{2})(- 1 + i\sqrt{2})} \\\\ M_g = \sqrt[2]{-(1 + i\sqrt{2})(- 1 + i\sqrt{2})} \\\\ M_g = \sqrt[2]{-(- 1 + i^2 \cdot 2)} \\\\ M_g = \sqrt[2]{- (- 1 - 2)} \\\\ \boxed{\boxed{M_g = \sqrt{3}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1728
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Números Complexos

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}