• Anúncio Global
    Respostas
    Exibições
    Última mensagem

<=====Números Complexos-Média Geométrica=====>

<=====Números Complexos-Média Geométrica=====>

Mensagempor futuromilitar » Qui Mai 26, 2016 22:08

Sendo P(X)= x^3+x^2+x+a divisível por (x-1), a média geometrica das raízes complexas é:

a)1
b)\sqrt[2]{i}
c)-\sqrt[2]{i}
d)i
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
Avatar do usuário
futuromilitar
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mai 19, 2016 17:50
Localização: Itapajé,Ceará,Brasil
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Contabilidade
Andamento: formado

Re: <=====Números Complexos-Média Geométrica=====>

Mensagempor DanielFerreira » Ter Mai 31, 2016 00:44

Ora, se P(x) é divisível por (x - 1), então P(1) = 0.

Com isso,

\\ P(x) = x^3 + x^2 + x + a \\ P(1) = 1 + 1 + 1 + a \\ a + 3 = 0 \\ \boxed{a = - 3}

Efectuando a divisão,

+ x³ + x² + x - 3 | x - 1
--------------------| x² + 2x + 3
+ x³ + x²
- x³ + x²
---------------------
+ 2x² + x - 3
- 2x² + 2x
---------------------
+ 3x - 3
- 3x + 3
---------------------
0

Resolvendo a equação x^2 + 2x + 3 = 0:

\\ x^2 + 2x + 3 = 0 \\\\ \Delta = 4 - 12 \\\\ \Delta = - 8 \\\\ \Delta = 8i^2 \\\\ x = \frac{- 2 \pm 2i\sqrt{2}}{2} \\\\ \boxed{x = - 1 \pm i\sqrt{2}}

Por fim, calculamos a média geométrica entre (- 1 - i\sqrt{2}) e (- 1 + i\sqrt{2}). Daí,

\\ M_g = \sqrt[2]{(- 1 - i\sqrt{2})(- 1 + i\sqrt{2})} \\\\ M_g = \sqrt[2]{-(1 + i\sqrt{2})(- 1 + i\sqrt{2})} \\\\ M_g = \sqrt[2]{-(- 1 + i^2 \cdot 2)} \\\\ M_g = \sqrt[2]{- (- 1 - 2)} \\\\ \boxed{\boxed{M_g = \sqrt{3}}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1670
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Números Complexos

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}