• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação- Complexos

Equação- Complexos

Mensagempor futuromilitar » Sáb Mai 21, 2016 14:20

Considere a equação (x+i)^2=6-(x+i)^2, onde x é um complexo, i=\sqrt[2]{i} e Re x>0 . O menor número natural n tal que {x}^{n} seja um imaginário puro é:

a)1

b)2

c)3

d)4
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
Avatar do usuário
futuromilitar
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qui Mai 19, 2016 17:50
Localização: Itapajé,Ceará,Brasil
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Contabilidade
Andamento: formado

Re: Equação- Complexos

Mensagempor DanielFerreira » Sáb Mai 21, 2016 16:30

futuromilitar escreveu:Considere a equação (x+i)^2=6-(x+i)^2, onde x é um complexo, i=\sqrt[2]{i} e Re x>0 . O menor número natural n tal que {x}^{n} seja um imaginário puro é:

a)1

b)2

c)3

d)4


Já faz algum tempo que não vejo o assunto (números complexos). Mas, vou tentar! Rs

Resolvendo a equação, temos:

\\ (x + i)^2 = 6 - (x + i)^2 \\\\ 2 \cdot (x + i)^2 = 6 \\\\ (x + i)^2 = 3 \\\\ (x + i) = \sqrt[2]{3} \\\\ x + i = + \sqrt{3}, \ \ \text{pois} \ \ x > 0 \\\\ \boxed{x = \sqrt{3} - i}

Note que:

- quando n = 1:

\\ x^1 = (\sqrt{3} - i)^1 \\ x^1 = \sqrt{3} - i

Não é imaginário puro.

- quando n = 2:

\\ x^2 = (\sqrt{3} - i)^2 \\ x^2 = 3 - 2i\sqrt{3} + i^2 \\ x^2 = 2 - 2i\sqrt{3}

Não é imaginário puro.

- quando n = 3:

Só concluir!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1641
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}


cron