• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação- Complexos

Equação- Complexos

Mensagempor futuromilitar » Sáb Mai 21, 2016 14:20

Considere a equação (x+i)^2=6-(x+i)^2, onde x é um complexo, i=\sqrt[2]{i} e Re x>0 . O menor número natural n tal que {x}^{n} seja um imaginário puro é:

a)1

b)2

c)3

d)4
"Nenhum soldado pode combater a não ser que esteja bem abastecido de carne e cerveja''
Avatar do usuário
futuromilitar
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Qui Mai 19, 2016 17:50
Localização: Itapajé,Ceará,Brasil
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Curso Técnico em Contabilidade
Andamento: formado

Re: Equação- Complexos

Mensagempor DanielFerreira » Sáb Mai 21, 2016 16:30

futuromilitar escreveu:Considere a equação (x+i)^2=6-(x+i)^2, onde x é um complexo, i=\sqrt[2]{i} e Re x>0 . O menor número natural n tal que {x}^{n} seja um imaginário puro é:

a)1

b)2

c)3

d)4


Já faz algum tempo que não vejo o assunto (números complexos). Mas, vou tentar! Rs

Resolvendo a equação, temos:

\\ (x + i)^2 = 6 - (x + i)^2 \\\\ 2 \cdot (x + i)^2 = 6 \\\\ (x + i)^2 = 3 \\\\ (x + i) = \sqrt[2]{3} \\\\ x + i = + \sqrt{3}, \ \ \text{pois} \ \ x > 0 \\\\ \boxed{x = \sqrt{3} - i}

Note que:

- quando n = 1:

\\ x^1 = (\sqrt{3} - i)^1 \\ x^1 = \sqrt{3} - i

Não é imaginário puro.

- quando n = 2:

\\ x^2 = (\sqrt{3} - i)^2 \\ x^2 = 3 - 2i\sqrt{3} + i^2 \\ x^2 = 2 - 2i\sqrt{3}

Não é imaginário puro.

- quando n = 3:

Só concluir!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1654
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.