• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potencias no processo de igualar a zero

Potencias no processo de igualar a zero

Mensagempor Soprano » Dom Fev 14, 2016 17:38

Olá a todos,

Numa resolução de sistema de equações racionais é necessário igualar o denominador a zero. O valor no denominador é 15x³(x-4). Então temos que fazer 15x³ = 0 que fica igual a x=0.

O que não percebi!
Consigo perceber que o 15 passa de multiplicar para o outro lado a dividir. E zero a dividir por alguma coisa é igual a zero. Mas como fazo com a potencia que fica no x. Aquele expoente como desaparece?

Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x⁴-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Potencias no processo de igualar a zero

Mensagempor DanielFerreira » Dom Fev 14, 2016 18:07

Olá!

Uma equação do 2º grau completa é da forma ax^2 + bx + c = 0, onde a \neq 0. Considere a equação de grau 2 em que b = 0, daí ficamos com ax^2 + c = 0; tal equação também é do 2º grau, mas incompleta.

Tomemos como exemplo a seguinte equação: x^2 - 25 = 0. Para encontrar suas raízes fazemos:

\\ x^2 - 25 = 0 \\ x^2 = 25 \\ x = \sqrt[2]{25} \\ \boxed{x = \pm 5}

Ora, para resolver tua equação, aplicamos raciocínio análogo, veja:

\\ 15x^3 = 0 \\\\ x^3 = \frac{0}{15} \\\\ x^3 = 0 \\\\ x = \sqrt[3]{0} \\\\ \boxed{x = 0}

Soprano escreveu:Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x⁴-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!


Nessa dúvida, podemos tomar como exemplo uma equação do 2º grau incompleta em que c = 0, isto é, ax^2 + bx = 0.

Poderá resolver essa equação pelo método usual (Bhaskara) ou pondo o x em evidência. Prefiro este, pois reduz a resolução em algumas linhas, por conseguinte, a chance de cometer alguma distração é menor.

Finalizo dizendo que tanto faz e tem lógica sim!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Potencias no processo de igualar a zero

Mensagempor Cleyson007 » Dom Fev 14, 2016 18:11

Sua primeira dúvida:

Não faz sentido dizer que o denominador é o a zero (o denominador de uma função racional é sempre diferente de zero).

Quanto a condição de 15x³(x-4) ser igual a zero, temos: 15x³ = 0 --> x = 0 ou x - 4 = 0 ---> x = 4.

Sua segunda dúvida:

Repare que quando "dividimos" em duas partes, encontramos dois valores para a qual o produto entre as duas funções é nulo (são os valores de 0 ou 4). Repare que a distributiva resultou num polinômio de quarto grau e, de fato, 0 ou 4 são raízes desta equação. Resumindo, temos a mesma "coisa" mas escrita de formas diferentes.

Bons estudos.

Att,

Prof° Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: