• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potencias no processo de igualar a zero

Potencias no processo de igualar a zero

Mensagempor Soprano » Dom Fev 14, 2016 17:38

Olá a todos,

Numa resolução de sistema de equações racionais é necessário igualar o denominador a zero. O valor no denominador é 15x³(x-4). Então temos que fazer 15x³ = 0 que fica igual a x=0.

O que não percebi!
Consigo perceber que o 15 passa de multiplicar para o outro lado a dividir. E zero a dividir por alguma coisa é igual a zero. Mas como fazo com a potencia que fica no x. Aquele expoente como desaparece?

Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x⁴-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Potencias no processo de igualar a zero

Mensagempor DanielFerreira » Dom Fev 14, 2016 18:07

Olá!

Uma equação do 2º grau completa é da forma ax^2 + bx + c = 0, onde a \neq 0. Considere a equação de grau 2 em que b = 0, daí ficamos com ax^2 + c = 0; tal equação também é do 2º grau, mas incompleta.

Tomemos como exemplo a seguinte equação: x^2 - 25 = 0. Para encontrar suas raízes fazemos:

\\ x^2 - 25 = 0 \\ x^2 = 25 \\ x = \sqrt[2]{25} \\ \boxed{x = \pm 5}

Ora, para resolver tua equação, aplicamos raciocínio análogo, veja:

\\ 15x^3 = 0 \\\\ x^3 = \frac{0}{15} \\\\ x^3 = 0 \\\\ x = \sqrt[3]{0} \\\\ \boxed{x = 0}

Soprano escreveu:Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x⁴-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!


Nessa dúvida, podemos tomar como exemplo uma equação do 2º grau incompleta em que c = 0, isto é, ax^2 + bx = 0.

Poderá resolver essa equação pelo método usual (Bhaskara) ou pondo o x em evidência. Prefiro este, pois reduz a resolução em algumas linhas, por conseguinte, a chance de cometer alguma distração é menor.

Finalizo dizendo que tanto faz e tem lógica sim!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Potencias no processo de igualar a zero

Mensagempor Cleyson007 » Dom Fev 14, 2016 18:11

Sua primeira dúvida:

Não faz sentido dizer que o denominador é o a zero (o denominador de uma função racional é sempre diferente de zero).

Quanto a condição de 15x³(x-4) ser igual a zero, temos: 15x³ = 0 --> x = 0 ou x - 4 = 0 ---> x = 4.

Sua segunda dúvida:

Repare que quando "dividimos" em duas partes, encontramos dois valores para a qual o produto entre as duas funções é nulo (são os valores de 0 ou 4). Repare que a distributiva resultou num polinômio de quarto grau e, de fato, 0 ou 4 são raízes desta equação. Resumindo, temos a mesma "coisa" mas escrita de formas diferentes.

Bons estudos.

Att,

Prof° Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?