• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Potencias no processo de igualar a zero

Potencias no processo de igualar a zero

Mensagempor Soprano » Dom Fev 14, 2016 17:38

Olá a todos,

Numa resolução de sistema de equações racionais é necessário igualar o denominador a zero. O valor no denominador é 15x³(x-4). Então temos que fazer 15x³ = 0 que fica igual a x=0.

O que não percebi!
Consigo perceber que o 15 passa de multiplicar para o outro lado a dividir. E zero a dividir por alguma coisa é igual a zero. Mas como fazo com a potencia que fica no x. Aquele expoente como desaparece?

Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x⁴-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!
Soprano
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Dom Fev 14, 2016 10:13
Formação Escolar: ENSINO MÉDIO
Área/Curso: Electrónica
Andamento: cursando

Re: Potencias no processo de igualar a zero

Mensagempor DanielFerreira » Dom Fev 14, 2016 18:07

Olá!

Uma equação do 2º grau completa é da forma ax^2 + bx + c = 0, onde a \neq 0. Considere a equação de grau 2 em que b = 0, daí ficamos com ax^2 + c = 0; tal equação também é do 2º grau, mas incompleta.

Tomemos como exemplo a seguinte equação: x^2 - 25 = 0. Para encontrar suas raízes fazemos:

\\ x^2 - 25 = 0 \\ x^2 = 25 \\ x = \sqrt[2]{25} \\ \boxed{x = \pm 5}

Ora, para resolver tua equação, aplicamos raciocínio análogo, veja:

\\ 15x^3 = 0 \\\\ x^3 = \frac{0}{15} \\\\ x^3 = 0 \\\\ x = \sqrt[3]{0} \\\\ \boxed{x = 0}

Soprano escreveu:Outra questão:
Porque que "divido" a expressão 15x³(x-4) em dois? Não deveria aplicar a dsitribuitiva para resolver e no final igualar a zero para descobrir o valor de x? Ficaria algo deste genero:

15x³(x-4)
15x⁴-60x³=0
...

Isto não tem lógica, certo? Estou a colocar o meu raciocinio aqui mesmo para testar as coisas :P Eu por vezes penso demasiado fora da caixa!


Nessa dúvida, podemos tomar como exemplo uma equação do 2º grau incompleta em que c = 0, isto é, ax^2 + bx = 0.

Poderá resolver essa equação pelo método usual (Bhaskara) ou pondo o x em evidência. Prefiro este, pois reduz a resolução em algumas linhas, por conseguinte, a chance de cometer alguma distração é menor.

Finalizo dizendo que tanto faz e tem lógica sim!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1679
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Potencias no processo de igualar a zero

Mensagempor Cleyson007 » Dom Fev 14, 2016 18:11

Sua primeira dúvida:

Não faz sentido dizer que o denominador é o a zero (o denominador de uma função racional é sempre diferente de zero).

Quanto a condição de 15x³(x-4) ser igual a zero, temos: 15x³ = 0 --> x = 0 ou x - 4 = 0 ---> x = 4.

Sua segunda dúvida:

Repare que quando "dividimos" em duas partes, encontramos dois valores para a qual o produto entre as duas funções é nulo (são os valores de 0 ou 4). Repare que a distributiva resultou num polinômio de quarto grau e, de fato, 0 ou 4 são raízes desta equação. Resumindo, temos a mesma "coisa" mas escrita de formas diferentes.

Bons estudos.

Att,

Prof° Clésio
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1216
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.