• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Números Complexos] Questão envolvendo Potenciação

[Números Complexos] Questão envolvendo Potenciação

Mensagempor everton_stark » Sáb Dez 26, 2015 22:49

Saudações à todos!

Estudando sobre o assunto cheguei a um exercício que pede o seguinte: Seja 'z' um número complexo tal que z = 2 + i2√3, z³ corresponde a que valor?

Bom no começo tentei colocar: (2 + i2√3)x(2 + i2√3)x(2 + i2√3), mas não bateu com a resposta do gabarito. Em seguida pesquisando na internet achei uma fórmula que dizia que para z³ teríamos: (a³ - 3ab²) + (3a²b - b³)i, mas também não consegui chegar a resposta do gabarito. A resposta que consta aqui é que o resultado é: 512 - i512√3.
everton_stark
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Dez 26, 2015 21:45
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ensino médio
Andamento: formado

Re: [Números Complexos] Questão envolvendo Potenciação

Mensagempor rzarour » Sex Abr 01, 2016 07:18

Prezado Everton,

Segundo consta em literatura sobre o assunto, os coeficientes binomiais nos permite resolver {\left(2+i2\sqrt[]{3} \right)}^{3} utilizando o arranjo {a}^{3}+3{a}^{2}b+3a{b}^{2}+{b}^{3}, o que nos dá como resultado o valor real de -64, que pode ser conferido em http://www.wolframalpha.com/widgets/vie ... 508e18d483 entrando com 2+i*2*3^(1/2) para o campo z1, utilizando a operação Involution (z1^z2) e o valor 3 em z2 (potência desejada para z1); clique em Submit e aguarde uns poucos segundos.

Caso a resposta certa seja diferente da encontrada, aprenderemos juntos tão logo alguém nos passe o caminho das pedras.

Um abraço,
rzarour
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Fev 29, 2016 02:05
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrotécnica
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}