• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números complexos módulo de dois números complexos important

Números complexos módulo de dois números complexos important

Mensagempor elisamaria » Qui Jun 11, 2015 16:56

Considere z um número complexo cujas partes, real e imaginária, não se anulam simultaneamente. Então, os números complexos que satisfazem a equação z + 1/z = 1, possuem módulo igual a:

a) 1/2.
b) √3/2.
c) √3.
d) 1.
elisamaria
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 09, 2015 16:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números complexos módulo de dois números complexos impor

Mensagempor nakagumahissao » Qui Jun 11, 2015 19:20

Resolução:

[1] z + \frac{1}{z} = 1

Tomemos z como sendo:

z = a + bi

e substituindo em [1], teremos:

z + \frac{1}{z} = 1 \Leftrightarrow z \cdot z + 1 = 1

\left(a + bi \right)\left(a + bi \right) + 1 = 1 \Leftrightarrow a^2 + abi + abi + b^2i^2 = a^2 + 2abi - b^2 = 1

a^2 + 2abi - b^2 \equiv 1 \Rightarrow (a^2 - b^2) + 2abi \equiv 1

Desta última sabemos o valor Real e o imaginário necessário para calcular a e b. Dessa maneira, temos que:

a^2 - b^2 = 1

2ab = 0

Desta última, sabemos que a ou b vale 0, mas não ambos, pois as partes, real e imaginária, não se anulam simultaneamente conforme o enunciado.

Façamos b = 0 e calculemos a:

a^2 + b^2 = 1 \Leftrightarrow a^2 + 0^2 = 1 \Leftrightarrow a^2 + 0 = 1 \Leftrightarrow a^2 = 1 \Rightarrow a = \pm 1

Portanto, a e b poderão ser:

a = \pm 1

b = 0

ou

b = \pm 1

a = 0

Quanto ao módulo sendo procurado, para quaisquer um dos resultados acima, deverá ser:

\left|z \right| = \sqrt[]{\left(\pm 1 \right)^{2} + 0^2} = 1

Portanto, a opção correta é a letra (D).


Espero ter auxiliado.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}